

For the period of January 1st, 2022 to December 31st, 2022

Prepared for the Corporation of the Town of Shelburne by the Ontario Clean Water Agency

Table of Contents

1.	S	ystem Description	2
2.	М	lonitoring Data and Comparison to Effluent Limits	5
	2.1	Sampling Frequency	5
	2.2	Effluent Objectives and Effluent Limits	6
	2.3	Comparison of Data to Effluent Objectives and Effluent Limits	7
	2.4	Additional Monitoring Parameters	10
	2.5	Overview of Success and Adequacy of the Works;	11
3.	0	perating Problems and Corrective Actions	11
4.	M	lajor Maintenance Activities	11
5.	Ef	ffluent Quality Assurance and Control	12
	5.1	Adherence to Provincial Regulations	12
	5.2	Use of Accredited Laboratories	12
	5.3	Operation by Licensed Operators	12
	5.4	Sampling and Analysis	13
	5.5	In-House Analysis	13
6.	C	alibration and Maintenance Procedures	13
7.	Ef	fforts and Results Achieved in Meeting Effluent Objectives	13
8.	SI	ludge Generation	14
9.	C	omplaints	15
10).	By-pass, Spill or Abnormal Discharge Events	15
11		Notice of Modifications	16
12	2.	Summary of Completed Modifications	16
13	3.	Additional Information	16

Appendix A: Performance Assessment Report

Appendix B: Sludge Haulage Summary, Sludge Quality Analysis, & Septage Receiving

Appendix C: Calibration Reports

Appendix D: Process Flow Schematic

Appendix E: Notice of Modification to the Sewage Works

Appendix F: ECA Limit Exceedance Email/Written Notifications

1. System Description

The Town of Shelburne is a community of approximately 8,994 people located approximately 100 kilometers northwest of Toronto. The community first obtained a waste disposal system in 1968 with the construction of a 5.5 ha lagoon and associated gravity collection and pumping system. The Town grew consistently over the years and eventually overloaded the lagoon system. In July 1981 construction was completed on a wastewater treatment system located at the present location. This expansion consisted of a new trunk sewer, pumping facilities, secondary and tertiary treatment and modifications to the existing lagoons which now provide storm and effluent holding during excess storm flows and plant upsets and maintenance.

The facility consisted of a wet well, a manual screen, grit channels, an oxidation ditch, one secondary clarifier, four effluent sand filters and a chlorine contact chamber. The oxidation ditch used two brush rotors. The facility operated as an extended aeration plant in this configuration from 1981 until December 1999.

A major expansion (Phase 1) took place at the Shelburne WWTP in 1999, changing the configuration of the plant and the method of treating wastewater. The plant went under construction starting in April 1999 with the start-up of the new process in December of 1999. The Shelburne WWTP is still an extended aeration plant. As an extended aeration plant it is designed to remove suspended solids, CBOD₅ and phosphorus from the wastewater. Major improvements were two aeration tanks constructed with fine bubble diffusers. The sludge treatment system consists of a two stage aerobic sludge digestion system with a total storage volume of 580m³, equipped with coarse bubble aeration system and supernatant decanting. The former oxidation ditch was converted to a sludge storage facility with approximately six months storage.

Sludge loading facilities provide for transfer of digested aerobic sludge to trucks. Digested sludge is landapplied as farm fertilizer.

Works:

Trunk Sanitary Sewers

 82 m of 750 mm diameter, 594 m of 600 mm diameter and 14.5 m of 300 mm diameter trunk

sanitary sewers complete with emergency overflow to adjacent creek and all necessary manholes, appurtenances and inter-connections to the sanitary collection system, commencing at a point approximately 100 m south and 13 m west of the intersection of Ella Street and Highway Nos. 10 and 89 following an easement 60 m east and then north across Highway Nos. 10 and 89 and then generally along the creek bank to a point approximately 40 m south, 15 m west of the pumping station then due north to the centre of Centennial Street (unopened extension) and then north and west 82 m to the Inlet Works at the sewage treatment plant;

Hauled Sewage Receiving Station

 one (I) hauled sewage transfer tank with a capacity of 24,000 L, located adjacent to the inlet works building;

Inlet Works

• one (I) automatic mechanical bar screen having a Peak Flow Rate of 13,000 m /d, one (I) manually cleaned bar racks for emergency or maintenance bypass and one (1) bypass channel overflow weir; _ one (I) 7.50 m x 2.93 m x 5.40 m benched wet well equipped with two (2) submersible pumps, each with VFD and rated at 34.4 to 103.3 Lis at 10.2 to 12.0 m TDH; _ one (I) wet weather flow pump rated at 81.0 Vs, 8.53 m TDH, discharging to the wet weather flow holding ponds; _ one (I) additional wet weather flow pump rated at 152 Vs, 1 6 m TDH., discharging through the storm forcemain to the wet weather flow holding ponds; _ one (I) 2.1 m diameter vortex grit separator having a Peak Flow Rate of 9,504 m /d and a grit classifier; _ three (3) 5.7 m x 0.6 x 1.0 m SWD grit channels having a Peak Flow Rate of 9,130 m /d for back up to the vortex grit separator;

Wet Weather Flow Holding Ponds

 one (I) 19,900 m Wet Weather Flow Holding Pond A and one (I) 16,800 m Wet Weather Flow Holding Pond B, to be used under emergency situations for temporary storage of wet weather flow to be returned later to the Inlet Works for further treatment;

Aeration Tanks

 two (2) 40 m x 10 m x 4.6 m SWD aeration tanks, each with two longitudinal cells with the inlet pipes to distribute flows into each cell of each tank, equipped with fine bubble diffused aeration system and two (2) centrifugal air blowers (one duty and one standby), rated at 500 Vs and 250 L/S respectively;

Secondary Clarifiers

- one (I) 14.0 m diameter x 2.8 m SWD secondary clarifiers equipped with sludge and scum removal mechanisms and cold weather cover;
- "one (I) 14.0 m diameter x 3.65 m SWD secondary clarifiers equipped with sludge and scum removal mechanisms and cold weather cover;

Clarifier Effluent Pump System

two (2) 2.9 m x 2.1 m x 2.0 m S WD clarified effluent tanks; _ three (3) VFD controlled dry pit filter feed pumps each rated at 17.2 to 51.7 L/S at 9.9 to I I .3 m T.D.H. discharging to either the filters or to the wet weather flow holding ponds;

Filtration

• two (2) cloth-filter treatment units (one standby) each having a Peak Flow Rate of 558 m/h via one (1) 450 mm diameter inlet piping to a splitter box, 250 mm process pipings to the units and overflow over a weir;

Ultraviolet (UV) Disinfection

 a 8.0 m x 0.61 m x I .067 m deep channel equipped with a low pressure mercury vapour ultraviolet irradiation lamp system having a Peak Flow Rate of 8,921 m /d and with a weighted lever gate on the outlet to the Parshall flume to maintain the liquid level in the channel at a depth of 460 mm;

Outfall Sewer

• approximately 60 m of 450 mm x 740 mm effluent outfall pipe discharging from the Parshall flume to a minor tributary of Boyne River;

Activated Sludge Pumping System

 three (3) VFD controlled sludge pumps, each rated at 8.6 to 34.4 Vs at 3.2 to 7.6 m T.D.H., complete with valving and piping to permit withdrawal from either the secondary clarifier sludge sump or the scum hopper and returning to either the aeration tanks or to wasting to the sludge digesters;

Phosphorus Removal

 Lone (I) 24.1 m capacity chemical storage tank and four (4) chemical metering pumps (two with capacity of 23 Uh to the secondary clarifiers and two with capacity of 108 LAI to the tertiary filters) for phosphorus removal;

Sludge Digestion

- a two stage aerobic sludge digestion system with one (I) 450 m stage I digester and one (I) 170 m stage 2 digester, both equipped with coarse bubble aeration system and supernatant decanting facility;
- two (2) air blowers (one standby shared with the aeration tanks) rated at 1,800m³/h supplying air to the digesters;
- two (2) replacement digested sludge transfer pumps (one standby) each rated at 20 L/s at 19 m TDH:

Biosolids Storage Tank

• one (1) 4,300 m biosolids storage tank with mixing nozzles and two (2) mixing pumps;

Effluent Flow Measurement

 one (I) 305 mm Parshall flume measuring quantity of effluent discharged from the plant located downstream of the UV disinfection system;

Standby Power

 one (I) 650 kW standby power diesel generator and 9000 L diesel tank with double-walled containment

This facility receives residential, commercial, institutional and industrial wastewater and provides a level of treatment to meet the amended "Environmental Compliance Approval - # 6413-ABLQQS" for discharging into the Beasley Drain a minor tributary of the Boyne River. The Boyne Creek empties into the Nottawasaga River, ultimately meeting Georgian Bay.

A "Process Flow Schematic" is included in **Appendix D** of this report.

An overview of Shelburne Wastewater Treatment Plant can be found in Table 1:

Table 1. Shelburne Wastewater Treatment Plant Overview

Facility Name	Shelburne Wastewater Treatment Plant
Facility Type	Extended Air STP with Tertiary Treatment
Plant Classification	WWT III
Works Number	110000659
Design Capacity	3,420 m ³ /day
Receiving Water	Besley Drain to Boyne Creek to Nottawasaga River
Environmental Compliance	6413-ABLQQS , issued July 19, 2016
Approval	·

2. Monitoring Data and Comparison to Effluent Limits

As per Section 10(6)(a) of ECA 6413-ABLQQS, a summary and interpretation of all monitoring data and a comparison to the effluent limits outlined in Effluent Limits of Condition 7, including an overview of the success and adequacy of the Works is required.

2.1 Sampling Frequency

Hauled sewage, raw sewage, and final effluent are sampled on a regular basis. The sampling types and frequencies are summarized in Tables 2, 3 and Table 4. The sampling frequencies meet the requirements set out in Section 9 of ECA 6413-ABLQQS.

Table 2. Hauled Sewage Monitoring (Hauled Sewage receiving Station) – Sampling Frequencies

Parameter	Sample Type	Frequency
BOD5 ^{2A}	Grab	Monthly
Total Suspended Solids ^{2A}	Grab	Monthly
Total Phophorus ^{2A}	Grab	Monthly
Total Kjeldahl Nitrogen ^{2A}	Grab	Monthly

^{2A}Refer to Appendix A for monthly sample results.

Table 3. Raw Sewage Monitoring – Sampling Frequencies

Parameter	Sample Type	Frequency
BOD ₅ ^{3A}	Composite	Monthly
Total Suspended Solids ^{3A}	Composite	Monthly
Total Phosphorous ^{3A}	Composite	Monthly
Total Kjeldahl Nitrogen ^{3A}	Composite	Monthly

^{3A}Refer to Appendix A for monthly sample results.

Table 4. Effluent Sampling Monitoring – Sampling Frequencies

Parameters	Sample Type	Frequency
CBOD ₅ ^{4A}	Composite	Weekly
Total Suspended Solids ^{4A}	Composite	Weekly
Total Phosphorous ^{4A}	Composite	Weekly
Total Ammonia Nitrogen ^{4A}	Composite	Weekly
E. Coli ^{4A}	Grab	Weekly
pH	Grab/Probe	Weekly
Temperature	Grab/Probe	Weekly

^{4A}Refer to Appendix A for monthly sample results.

2.2 Effluent Objectives and Effluent Limits

The effluent objectives as per Section 6 of ECA 6413-ABLQQS for the Shelburne Wastewater Treatment Plant are found in Table 5.

Table 5. Effluent Objectives as per Section 6 of ECA 6413-ABLQQS

Effluent Parameter	Concentration Objective (mg/L)
CBOD₅	4.0
Total Suspended Solids	4.0
Total Phosphorous	0.12
Total Ammonia Nitrogen	
June 01 to Sept 30	0.5
Oct 01 to May 31	2.0
E-coli	150 CFU /100 mL (monthly Geometric Mean
	Density)
рН	maintained between 6.5 to 8.5, inclusive, at all times

The effluent limits that are to be met as per Section 7 of ECA 6413-ABLQQS for the Shelburne Wastewater Treatment Plant are found in Table 6. Any exceedance with the limits found in Table 6 constitutes a non-compliance with ECA 6413-ABLQQS.

Table 6. Effluent Limits as per Section 7 of ECA 6413-ABLQQS

Effluent Parameter	Average Concentration Limit (mg/L)	Average Waste Loading Limit (kg/day)			
CBOD ₅	5.0	17.1			
Total Suspended Solids	5.0	17.1			
Total Phosphorous	0.25	0.86			
Total Ammonia Nitrogen					
Jun 01 to Sep 30	0.8	2.7			
Oct 01 to May 31	2.4	8.2			
E-coli	200 CFU /100 mL (monthly	n/a			
	Geometric Mean Density)				
pH	maintained between 6.0	to 9.5, inclusive, at all times			

2.3 Comparison of Data to Effluent Objectives and Effluent Limits

Analytical and monitoring data for the Shelburne Wastewater Treatment Facility is stored in OCWAs data management system (WISKI). Annual and monthly averages for flows, CBOD₅, BOD₅, Suspended Solids, Total Phosphorous, Nitrogen-series and E.coli can be found in Appendix A. A comparison of analytical data from effluent samples to the effluent objectives and effluent limits shown in the below Tables 7-13:

Table 7. 2022 Monthly Average Concentration and Loading of CBOD₅ in Comparison to ECA Objectives and Limits

			CBOI) ₅		
	Monthly Average Concentration (mg/L)	Within Objectives (4.00 mg/L)	Within Limits (5.00 mg/L)	Monthly Average Loading (kg/d)	Within Objectives (kg/d)	Within Limits (17.10 kg/d)
January	3.25	Yes	Yes	7.57	n/a	Yes
February	<3.83	Yes	Yes	<8.90	n/a	Yes
March	3.40	Yes	Yes	9.08	n/a	Yes
April	2.75	Yes	Yes	7.10	n/a	Yes
May	<5.40	No	No ^{7A}	<11.18	n/a	Yes
June	<3.50	Yes	Yes	<8.08	n/a	Yes
July	<3.00	Yes	Yes	<6.51	n/a	Yes
August	<4.00	Yes	Yes	<7.42	n/a	Yes
September	4.50	No	Yes	8.40	n/a	Yes
October	<3.25	Yes	Yes	<6.16	n/a	Yes
November	<3.00	Yes	Yes	<5.84	n/a	Yes
December	<3.25	Yes	Yes	<6.74	n/a	Yes

^{7A}Required notification of non-compliances were made for the limit exceedance in May 2022 and full details are provided in appendix F

Table 8. 2022 Monthly Average Concentration and Loading of TSS in Comparison to ECA Objectives and Limits

			Total Suspende	ed Solids		
	Monthly Average Concentration (mg/L)	Within Objectives (4.00 mg/L)	Within Limits (5.00 mg/L)	Monthly Average Loading (kg/d)	Within Objectives (kg/d)	Within Limits (17.10 kg/d)
January	3.75	Yes	Yes	8.73	n/a	Yes
February	4.33	No	Yes	10.06	n/a	Yes
March	3.20	Yes	Yes	8.55	n/a	Yes
April	4.00	Yes	Yes	10.33	n/a	Yes
May	<2.40	Yes	Yes	<4.97	n/a	Yes
June	3.00	Yes	Yes	6.93	n/a	Yes
July	3.75	Yes	Yes	8.14	n/a	Yes
August	3.60 Yes	Yes	Yes	6.68	n/a	Yes
September	3.50	Yes	Yes	6.53	n/a	Yes
October	<2.00	Yes	Yes	<3.79	n/a	Yes
November	2.80	Yes	Yes	5.45	n/a	Yes
December	5.50	No	No ^{8A}	11.40	n/a	Yes

^{8A}Required notification of non-compliances were made for the limit exceedance in December 2022 and full details are provided in appendix F

Table 9. 2022 Monthly Average Concentration and Loading of Total Phosphorus in Comparison to

ECA Ob	jectives	and	Limits
--------	----------	-----	--------

,		Total Phosphorus							
_	Monthly Average Concentration (mg/L)	Within Objectives (0.12 mg/L)	Within Limits (0.25 mg/L)	Monthly Average Loading (kg/d)	Within Objectives (kg/d)	Within Limits (0.86 kg/d)			
January	0.08	Yes	Yes	0.18	n/a	Yes			
February	0.10	Yes	Yes	0.23	n/a	Yes			
March	0.10	Yes	Yes	0.25	n/a	Yes			
April	0.11	Yes	Yes	0.29	n/a	Yes			
May	0.05	Yes	Yes	0.10	n/a	Yes			
June	0.09	Yes	Yes	0.21	n/a	Yes			
July	0.10	Yes	Yes	0.21	n/a	Yes			
August	0.09	Yes	Yes	0.17	n/a	Yes			
September	0.17	No	Yes	0.31	n/a	Yes			
October	0.13	No	Yes	0.25	n/a	Yes			
November	0.09	Yes	Yes	0.17	n/a	Yes			
December	0.08	Yes	Yes	0.17	n/a	Yes			

Table 10. 2022 Monthly Average Concentration and Loading of Total Ammonia Nitrogen in Comparison to ECA Objectives and Limits

	Total Ammonia Nitrogen									
			(Amn	nonia Ni	trogen +	<u>Ammoni</u>	ium Nitro	ogen)		
	Monthly Average Concentration (mg/L)	Within Objectives (Jun 01-Sept 30 0.50 mg/L)	Within Objectives (Oct 01-May 31 2.00 mg/L)	Within Limits (Jun 01-Sept 30 0.80 mg/L)	Within Limits (Oct 01-May 31 2.4 mg/L)	Monthly Average Loading (kg/d)	Within Objectives (Dec 01-Apr 30 kg/d)	Within Objectives (May 01-Nov 30 kg/d)	Within Limits (June 01-Sept 30 2.70 kg/d)	Within Limits (Oct 01-May 31 8.20 kg/d)
January	<0.10	n/a	Yes	n/a	Yes	<0.23	n/a	n/a	n/a	Yes
February	<0.10	n/a	Yes	n/a	Yes	<0.23	n/a	n/a	n/a	Yes
March	<0.10	n/a	Yes	n/a	Yes	<0.27	n/a	n/a	n/a	Yes
April	<0.10	n/a	Yes	n/a	Yes	<0.26	n/a	n/a	n/a	Yes
May	<0. 10	n/a	Yes	n/a	Yes	<0.21	n/a	n/a	n/a	Yes
June	<0.18	Yes	n/a	Yes	n/a	<0.40	n/a	n/a	Yes	n/a
July	<0.10	Yes	n/a	Yes	n/a	<0.22	n/a	n/a	Yes	n/a
August	<0.10	Yes	n/a	Yes	n/a	<0.19	n/a	n/a	Yes	n/a
September	<0.10	Yes	n/a	Yes	n/a	<0.19	n/a	n/a	Yes	n/a
October	<0.10	n/a	Yes	n/a	Yes	<0.19	n/a	n/a	n/a	Yes
November	<0.10	n/a	Yes	n/a	Yes	<0.20	n/a	n/a	n/a	Yes
December	<0.13	n/a	Yes	n/a	Yes	<0.26	n/a	n/a	n/a	Yes

Table 11. 2022 Monthly Average Concentration of E.Coli in Comparison to ECA Objectives and Limits

		E.coli	
	Monthly Geometric Mean Density (CFU/100mL)	Within Objectives (150 CFU/100mL)	Within Limits (200 CFU/100mL)
January	2.38	Yes	Yes
February	1.68	Yes	Yes
March	2.00	Yes	Yes
April	1.68	Yes	Yes
May	2.00	Yes	Yes
June	2.00	Yes	Yes
July	2.00	Yes	Yes
August	1.74	Yes	Yes
September	2.00	Yes	Yes
October	1.68	Yes	Yes
November	2.00	Yes	Yes
December	2.00	Yes	Yes

Table 12. 2022 Monthly Minimum and Maximum pH in Comparison to ECA Objectives and Limits

	рН							
	pH Monthly Minimum	pH Monthly Maximum	Within Objectives (6.5-8.5)	Within Limits (6.0-9.5)				
January	7.6	7.7	Yes	Yes				
February	7.6	7.6	Yes	Yes				
March	7.5	7.7	Yes	Yes				
April	7.6	7.8	Yes	Yes				
May	7.6	7.7	Yes	Yes				
June	7.7	7.7	Yes	Yes				
July	7.3	7.8	Yes	Yes				
August	7.7	7.8	Yes	Yes				
September	7.3	7.7	Yes	Yes				
October	7.5	7.7	Yes	Yes				
November	7.4	7.6	Yes	Yes				
December	7.4	8.0	Yes	Yes				

Table 13. 2022 Monthly Minimum and Maximum Temperature

	Temperature					
	Monthly Minimum (°C)	Monthly Maximum (°C)				
January	11.2	14.2				
February	12.6	14.2				
March	12.5	14.9				
April	12.9	15.5				
May	15.1	19.1				
June	18.4	20.1				
July	20.8	21.7				
August	21.7	23.0				
September	19.0	22.9				
October	17.2	19.3				
November	14.8	17.8				
December	12.7	15.5				

Table 14. Effluent Monitoring Parameter Summary as required by ECA 6413-ABLQQS for Shelburne Treatment Plant, 2022

Parameters	Average (mg/L)	Minimum (mg/L)	Maximum (mg/L)	Average Annual Loading (kg/d)
CBOD₅	3.63	2.75	5.40	7.75
Total Suspended Solids	3.48	<2.00	5.50	7.63
Total Phosphorus	0.10	0.05	0.17	0.21
Total Ammonia Nitrogen	<0.11	<0.10	<0.18	<0.24
E.Coli (cfu/100ml)	-	1.68	2.38	n/a
pH	7.6	7.3	8.0	n/a
Temperature	16.9	11.2	21.7	n/a

2.4 Additional Monitoring Parameters

The following parameters in Table 15 do not have limits or objectives but are monitored on a regular basis (see Section 2.1 for sampling frequency) as required by ECA 6413-ABLQQS. Table 15 summarizes the monitoring data for the reporting period.

Raw sewage quality in 2022 overall in all parameters were lower than compared to raw sewage quality in 2021. BOD_5 annual average was 478.54 mg/L in 2021 and was lower this year at 455.58 mg/L. TSS annual average was 1349.08 mg/L in 2021 and was significantly lower this year at 645.00 mg/L. TP annual average was 9.24 mg/L in 2021 and lower this year at 6.63 mg/L. TKN annual average was 56.28 mg/L in 2021 and was lower this year at 45.11 mg/L.

Table 15. Raw Sewage Monitoring Parameters as required by ECA 6413-ABLQQS for Shelburne Wastewater Treatment Plant, 2022

Parameter	Average (mg/L)	Minimum (mg/L)	Maximum (mg/L)
BOD ₅ ^{15A}	455.58	262.00	703.00
Total Suspended Solids ^{15A}	645.00	194.00	1300.00
Total Phosphorous ^{15A}	6.63	3.59	11.60

Total Kjeldahl Nitrogen ^{15A}	45.11	26.60	59.00
--	-------	-------	-------

^{15A}Refer to Appendix A for monthly sample results.

The following parameters in Table 16 do not have limits or objectives but are monitored as needed when septage is received at the facility. Table 16 summarizes the monitoring data for the reporting period.

Table 16. Hauled Sewage Monitoring

Parameter	Average (mg/L)	Minimum (mg/L)	Maximum (mg/L)
BOD ₅	5467.86	1660.00	8200.00
Total Suspended Solids	17575.71	8360.00	28200.00
Total Phosphorous	122.41	35.70	200.00
Total Kjeldahl Nitrogen	759.50	305.00	1110.00

2.5 Overview of Success and Adequacy of the Works;

The annual average effluent CBOD₅ concentration was 3.63 mg/L with a removal efficiency of >98.34%. The annual average effluent TSS concentration was 3.48 mg/L with a removal efficiency of >98.07%. The annual average effluent Total Phosphorus concentration was 0.10 mg/L with a removal efficiency of >97.33%.

The bacteriological quality of the effluent complied with the certificate of approval requirement of <200 Colony Forming Units (CFU) per 100 mL sample. The maximum geometric mean density for 2022 was 2.38 CFU per 100 mL, indicating adequate effluent disinfection for the majority of the year.

The total raw sewage volume of wastewater treated in 2022 was 957,440.20 m³. The annual average daily flow of raw sewage was 2,623.12 m³/day was 76.70 % of the design flow (3,420 m³/day). The maximum peak flow of 3,830.40 m³/day occurred in February due to higher precipitation and snow melt. This represents a peak flow of 1.1 times the rated capacity. The wastewater treatment plant operated within the rated capacity 99.18% of the time (362 out of 365 days of the year). The average daily flow is approaching 80% of the rated capacity and the Town of Shelburne is well aware of this. With future upgrades proposed for the Works this will increase design capacity to accommodate the growth of the Town.

3. Operating Problems and Corrective Actions

As per Section 10(6)(b) of ECA 6413-ABLQQS, a description of any operating problems encountered and corrective actions taken is required.

During the reporting period there were two (2) operating problems/situations encountered and corrective actions taken at the Shelburne Wastewater Plant during 2022 that affected the quality of the effluent leaving the plant. One situation occurred in May 2022 where the CBOD5 monthly average concentration limit was exceeded due to the North Clarifier being taken out of service on April 28, 2022 for repairs of the return activated sludge pumps 1 and 3 while the plant may have taken a shock load of BOD from possible industrial section of town. It was observed in the lab analysis between weekly samples of CBOD5 from May 3, 2022 to May 10, 2022. The North Clarifier was returned to service June 6, 2022. Another situation occurred December 2022 where the Total Suspended Solids monthly average concentration limit was exceeded due to high concentration of solids entering the plant after hours, the observation of black raw sewage coming into the plant, snow storm causing equipment failures and electrical cable issues to the equipment. During this situation corrective actions were taken throughout the month to remediate by cleaning UV channel, auto sampler/discharge lines, increase aeration and contractor/electrician onsite to solve electrical issues. The ECA limit exceedance written/email

notification which include full details of these occurrences are included in Appendix F. All major repairs/maintenance can be found in Section 4 of this report.

4. Major Maintenance Activities

As per Section 10(6)(c) of ECA 6413-ABLQQS, a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanisms or thing forming part of the works is required.

Plant maintenance, including non-scheduled maintenance is monitored using Maximo Work Management System. All routine and preventative maintenance was conducted as scheduled in 2022.

For 2022, major maintenance activities that occurred include:

- Septage tank clean out
- Sludge transfer pump repair
- North Clarifier visual inspection while out of service
- Sump pump replacement
- Yard hydrant repair
- Return activated sludge pump #1 repairs
- Return activated sludge pump #3 repairs
- Clarifier sweeper arm repair
- Mechanical bar screen repair
- Blower air filter replacements
- · Grit vortex system cleanout
- Annual Backflow Prevention inspection
- UV Lamp and Sleeve replacements
- Annual Gas Sensor calibrations
- Annual Flow Meter calibrations
- Headworks Wet Well cleanout

5. Effluent Quality Assurance and Control

As per Section 10(6)(d) of ECA 6413-ABLQQS, a summary of any effluent quality assurance or control measures undertaken in the reporting period is required:

Quality assurance and control measures undertaken during the reporting period include adherence to provincial regulations, use of accredited laboratories, operation of the system by licensed Operators, scheduled sampling and analysis, in-house laboratory analysis, and calibration and preventative maintenance of equipment. The sections below provide further details of these measures.

5.1 Adherence to Provincial Regulations

The Ontario Clean Water Agency operates the WWTP in accordance with provincial regulations and the Environmental Compliance Approval.

5.2 Use of Accredited Laboratories

Analytical tests to monitor the effluent quality are conducted by a laboratory audited by the Canadian Association for Laboratory Accreditation Inc. (CALA) and accredited by the Standards Council of Canada (SCC). Accreditation ensures that the laboratory has acceptable laboratory protocols and test methods in place. It also requires the laboratory to provide evidence and assurances of the proficiency of the analysts performing the test methods. During the reporting period, all chemical sample analyses were conducted by SGS (Lakefield) Canada Inc.

5.3 Operation by Licensed Operators

The WWTP was operated and maintained by licensed Operators. The mandatory licensing program for operators of sewage treatment facilities in Ontario is regulated under the Ontario Water Resources Act (OWRA) Regulation 435/93 and Ontario Regulation 129/04. A Licensed individual has successfully passed the licensing exam and meets the education and experience requirements set out in the regulation.

5.4 Sampling and Analysis

The Ontario Clean Water Agency followed a sampling and analysis schedule that meets the requirements of the ECA.

5.5 In-house Analysis

In-house analysis were conducted by Licensed Operators for monitoring purposes using standard methods. The data generated from these tests is used to determine the treatment efficiency while effectively maintaining process control. All in-house monitoring equipment is calibrated based on the manufacturer's recommendations. Using their expertise, Operators of the facility make best efforts to stay within the ECA Effluent Objectives and Limits.

6. Calibration and Maintenance Procedures

As per Section 10(6)(e) of ECA 6413-ABLQQS, a summary of the calibration and maintenance carried out on all effluent monitoring equipment is required.

All in-house monitoring equipment is calibrated/verified as per manufacturer's recommendations. Monitoring and metering equipment is also calibrated by a third party on an annual basis. Preventative maintenance is scheduled for all equipment at the sewage treatment plant and pumping stations at regular frequency (frequency depends on the equipment and type of maintenance). Maintenance activities are scheduled within the work management system Maximo, upon completion, Operators set the work order to complete. On a monthly basis, preventative work orders are reviewed for completion.

Indus Controls was contracted to calibrate flow measuring equipment on August 23, 2022. Copies of these calibration reports can be found in **Appendix C** of this report.

7. Efforts and Results Achieved in Meeting Effluent Objectives

As per Section 10(6)(f) of ECA 6413-ABLQQS, a description of efforts made and results achieved in meeting the Effluent Objectives of Condition 6 is required.

Condition 6 is imposed "to establish non-enforceable effluent quality objectives which the Owner is obligated to use best efforts to strive towards on an ongoing basis. These objectives are to be used as a mechanism to trigger corrective action proactively and voluntarily before environmental impairment occurs and before the compliances limits of Condition 7 are exceeded."

OCWA as the Operating Authority (on behalf of the Owner) has made best efforts to stay within the Effluent Objectives in the ECA. These efforts are supported through:

- Continuous monitoring equipment
- Regular plant inspections/checks
- In-house sampling and testing
- Laboratory (3rd party) analysis of influent and effluent samples
- Data review
- Process optimization and adjustments (as required)
- Scheduled/preventative maintenance
- Repairs as necessary

A summary of the effluent quality in comparison to the effluent objectives can be found in Tables 7-13 of section 2.3 of this report. These results show that sewage treatment operations for 2022 provided effluent quality that was within all effluent objectives outlined in the ECA and minimized environmental impairment with the exception of CBOD₅ (February and September 2022), Total Suspended Solids (February and December 2022) and Total Phosphorous (September and October 2022). Higher Mixed Liquor Suspended Solids concentrations in aeration basin and temperature fluctuations could account for some effluent objective exceedances. Minor operational changes were implemented to provide higher effluent quality in order to achieve the effluent objectives outlined in the ECA.

8. Sludge Generation

As per Section 10(6)(g) of ECA 6413-ABLQQS, a tabulation of the volume of sludge generated in the reporting period, an outline of anticipated volumes to be generated in the next reporting period and a summary of the locations to where the sludge was disposed is required.

Digested sludge produced at the Shelburne WWTP is land-applied in accordance with the Nutrient Management Act 2002 and Ontario Regulation 267/03.

Grab samples of digested (aerobic) sludge are collected and tested as per these requirements. In 2022, sludge sample analysis was carried out by SGS Lakefield Research Limited. Sludge analysis showed that the sludge met the quality criteria specified in the Ontario Guidelines for the Utilization of Biosolids and Other Wastes on Agricultural Land (Guidelines). A summary of sludge sample results is provided in **Appendix B** of this report, along with septage data for the reporting period.

Saugeen Agri. Service was contracted to haul and spread sludge from the Shelburne Wastewater plant in 2022. (Certificate of Approval - Waste Management System #9566-6HYKC3)

The Town of Shelburne has an arrangement/agreement for the hauling, acceptance and processing of liquid biosolids material from the Shelburne Wastewater Treatment Plant with Lystek International Corp. Volumes of biosolids hauled from the Shelburne Wastewater Treatment Plant to Lystek are noted in below table 17.

The following certified sites were utilized in 2022:

 Table 17. Volume of Sludge Generated from Shelburne Wastewater Treatment Plant in 2022

Site	Site Location	Volume of Biosolids (m³)	Hauler
NASM Submission ID: 24387	Harvey Martin Field	2691.00	Saugeen Agri.
NASM Submission ID: 25079	Leroy May	2934.00	Saugeen Agri.
NASM Submission ID: 25247	Gary Horst	3538.00	Saugeen Agri.
Lystek International Corp.	Dundalk, On	1090.00	Saugeen Agri.

A total volume of 9,163 m³ of sludge was applied to the above fields from the Shelburne WWTP in 2022.

Based on the design flow, average wastewater quantity and a linear regression with an R² value of 93.91%, the anticipated volume of sludge generated for 2023 will be approximately 10,200 m³.

Shelburne WWTP Sludge Haulage Volumes 12000 y = 734.48x - 1E + 06 $R^2 = 0.9391$ 10000 8000 6000 4000 2000 0 2012 2016 2014 2018 2020 2022 2024

Figure 1. Shelburne Wastewater Treatment Plant Haulage Volumes (2013 to 2021)

9. Complaints

As per Section 10(6)(h) of ECA 6413-ABLQQS, a summary of any complaints received during the reporting period and any steps taken to address the complaints is required.

A standard operating procedure (SOP) is in place for addressing complaints received from the community. All complaints are addressed and documented in the facility logbook. Community complaint information is entered in OCWA's electronic database system "WMS Maximo". This system contains all the required information and history of all complaints.

There were no complaint registered in 2022 for the reporting period.

10. By-pass, Spill or Abnormal Discharge Events

As per Section 10(6)(i) of ECA 6413-ABLQQS, a summary of all By-pass, spill or abnormal discharge events (additionally events outside of Normal Operating Conditions) is required.

There were no by-passes, spills, abnormal discharge events or over flows. However, there were situations outside of Normal Operating Conditions that occurred during this reporting period with regard to the Shelburne Wastewater Treatment Plant. One situation occurred in May 2022 where the CBOD5 monthly average concentration limit was exceeded due to the North Clarifier being taken out of service on April 28, 2022 for repairs of the return activated sludge pumps 1 and 3 while the plant may have taken a shock load of BOD from possible industrial section of town. It was observed in the lab analysis between weekly samples of CBOD5 from May 3, 2022 to May 10, 2022. The North Clarifier was returned to service June 6, 2022. Another situation occurred December 2022 where the Total Suspended Solids monthly average concentration limit was exceeded due to high concentration of solids entering the plant

after hours, the observation of black raw sewage coming into the plant, snow storm causing equipment failures and electrical cable issues to equipment. During this situation corrective actions were taken throughout the month to remediate by cleaning UV channel, auto sampler/discharge lines, increase aeration and contractor/electrician onsite to solve electrical issues. The ECA limit exceedance written/email notification which include full details of these occurrences are included in Appendix F

ECA 6413-ABLQQS requires that Quarterly bypass/overflow reports are to be submitted to the Water Supervisor. All 2022 quarterly reports were submitted to the Water Supervisor by the deadlines specified in the ECA.

11. Notice of Modifications

As per Section 10(6)(j) of ECA 6413-ABLQQS, a copy of all Notice of Modifications submitted to the Water Supervisor as a result of Schedule B, Section 1, with a status report on the implementation of each modification is required.

There was one (1) modification at the Shelburne Wastewater Treatment Plant during the reporting period. Please see Appendix E for the completed Notice of Modification to the Sewage Works.

The Notice of Modification was signed March 29, 2022

Description of the Modifications as part of the Limited Operational Flexibility;

AQUABACxt is a highly effective, US EPA-registered biological larvicide. It contains a species of bacteria called bacillus thuringiensis, an approved pesticide for controlling red worms and midge flies in wastewater treatment plants. On a weekly basis from spring to fall operations will dose the incoming raw sewage and aeration tank to eliminate midge flies at the plant during the summer months.

The addition of AQUABACxt was started April 11, 2022 and was greatly beneficial, there was a major reduction of midge flies in the clarifiers and filter/UV rooms when this product was used compared to previous years when no product was used. This product will continue to be used on a weekly basis from spring to fall.

12. Summary of Completed Modifications

As per Section 10(6)(k) of ECA 6413-ABLQQS, a report summarizing all modifications completed as a result of Schedule B, Section 3 is required.

Normal or emergency operational modifications, such as repairs, reconstructions, or other improvements that are part of maintenance activities, including cleaning, renovations to existing approved sewage works equipment are included in Section 4 of this report.

13. Additional Information

As per Section 10(6)(I) of ECA 6413-ABLQQS, any other information the Water Supervisor requires from time to time is required.

There were no requests from the Water Supervisor for any other information during the reporting period.

2022 Annual Performance Report Shelburne Wastewater Treatment Plant Amended Environmental Compliance Approval No. 6413-ABLQQS

Appendix A

Performance Assessment Report

2022

Page 1 of 2

Performance Assessment Report

From 1/1/2022 to 12/31/2022

5773 SHELBURNE WASTEWATER TREATMENT FACILITY 110000659 1 / 2022 2/ 2022 3/2022 4/ 2022 5/2022 6/ 2022 7/ 2022 8/ 2022 9/ 2022 10/2022 11/2022 12/ 2022 <--Total--> <--Max--> <-Criteria-> <--Avg--> **Flows** Raw Flow: Total - Raw Sewage m3/d 85.300.60 76.627.30 95.175.70 90.656.90 77.851.90 86.788.30 77.938.50 70.091.80 69.555.90 74.333.7 74.313.70 78.805.90 957.440.20 0.00 Raw Flow: Avg - Raw Sewage m³/d 2.751.63 2.736.69 3.070.1 3.021.90 2.511.35 2.892.94 2.514.15 2.261.03 2.318.5 2.397.86 2.477.12 2.542.13 2.623.12 3.420.00 Raw Flow: Max - Raw Sewage m3/d 3.220.80 3.830.40 3.361.90 3.260.80 2.751.90 3.068.10 2.974.1 2.409.70 2.433.30 2.556.10 2.676.80 2.897.00 3.830.40 0.00 Raw Flow: Count - Raw Sewage m3/d 31.00 28.00 31.00 30.00 31.00 30.00 31.00 31.00 30.00 31.00 30.00 31.00 365.00 0.00 Eff. Flow: Total - Final Effluent m3/d 72.174.60 65.012.60 82.796.80 77.456.80 64.172.10 69.281.40 67.290.60 57.491.60 55.973.90 58.755.90 58.357.80 64.249.00 793.013.10 0.00 Eff. Flow: Avg - Final Effluent m3/d 2.328.21 2.321.88 2.670.86 2.581.89 2.070.07 2.309.38 2.170.66 1.854.57 1.865.80 1.895.35 1.945.26 2.072.55 2.172.64 Eff. Flow: Max - Final Effluent m3/d 2.832.70 3.449.00 2.990.2 2.848.80 2.306.60 2.597.90 2.620.80 2.118.80 2.002.70 2.146.40 2.234.80 2.367.30 3.449.00 0.00 Eff Flow: Count - Final Effluent m3/d 31.00 28.00 31.00 30.00 31.00 30.00 31.00 31.00 30.00 31.00 30.00 31.00 365.00 0.00 Carbonaceous Biochemical Oxygen Demand: CBOD Raw: Avg cBOD5 - Raw Sewage mg/L 341.00 357.00 575.00 541.00 369.00 426.58 312.00 546.00 377.00 797.00 181.00 392.00 331.00 0.00 Raw: # of samples of cBOD5 - Raw Sewage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 12.00 0.00 3.40 3.00 4.50 3.25 5.00 Eff: Avg cBOD5 - Final Effluent mg/L 3.25 3.83 2.75 5.40 3.50 4.00 3.25 3.00 3.63 5.40 Eff: # of samples of cBOD5 - Final Effluent 4.00 6.00 5.00 4.00 5.00 4.00 4.00 5.00 4.00 4.00 5.00 4.00 54.00 0.00 Loading: cBOD5 - Final Effluent kg/d 7.567 8.901 9.081 7.100 11.178 8.083 6.512 7.418 8.396 6.160 5.836 6.736 7.75 11.18 0.000 98.96 99.30 99.10 99.19 99.32 99.02 98.34 99.30 99.17 99.23 99.02 99.32 0.00 Percent Removal: cBOD5 - Final Effluent % 99.12 **Biochemical Oxygen Demand: BOD5** Raw: Avg BOD5 - Raw Sewage mg/L 417.00 640.00 315.00 313.00 638.00 310.00 262.00 703.00 525.00 359.00 666.00 319.00 455.58 703.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 12.00 0.00 Raw: # of samples of BOD5 - Raw Sewage 1.00 3.00 2.00 Eff: Avg BOD5 - Final Effluent mg/L 3.00 3.00 3.00 4.00 4.00 4.00 4.00 5.00 5.00 4.00 3.67 4.145 Loading: BOD5 - Final Effluent kg/d 6.985 6.966 8.013 10.328 8.280 9.238 6.512 7.418 9.329 9.477 7.781 7.87 10.33 0.000 Percent Removal: BOD5 - Final Effluent % 99.28 99.53 99.05 98.72 99.37 98.85 99.43 99.05 98.61 99.40 99.37 0.00 Total Suspended Solids: TSS Raw: Avg TSS - Raw Sewage mg/L 542.00 661.00 483.00 350.00 915.00 408.00 194.00 1,160.00 719.00 669.00 1.330.00 309.00 645.00 1.330.00 0.00 Raw: # of samples of TSS - Raw Sewage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 12.00 0.00 Eff: Avg TSS - Final Effluent mg/L 3.75 4.33 3.20 4.00 2.40 3.00 3.75 3.60 3.50 2.00 2.80 5.50 3.48 5.50 5.00 4.00 6.00 4.00 5.00 4.00 4.00 4.00 4.00 54.00 Eff: # of samples of TSS - Final Effluent 5.00 5.00 4.00 5.00 0.00 8.731 8.547 10.328 4.968 6.928 8.140 6.676 6.530 3.791 5.447 11.399 7.63 11.40 0.000 Loading: TSS - Final Effluent kg/d 10.061 Percent Removal: TSS - Final Effluent % 99.31 99.34 99.34 98.86 99.74 99.26 98.07 99.69 99.51 99.70 99.79 98.22 99.79 0.00

Total Phosphorus: TP

Page 2 of 2

Performance Assessment Report

From 1/1/2022 to 12/31/2022

Raw: Avg TP - Raw Sewage mg/L	5.46	8.05	4.33	4.86	9.49	4.68	3.59	7.57	7.26	5.39	11.60	7.25		6.63	11.60	0.00
Raw: # of samples of TP - Raw Sewage	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00			0.00
Eff: Avg TP - Final Effluent mg/L	0.08	0.10	0.10	0.11	0.05	0.09	0.10	0.09	0.17	0.13	0.09	0.08		0.10	0.17	0.25
Eff: # of samples of TP - Final Effluent	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	6.00	4.00	53.00			0.00
Loading: TP - Final Effluent kg/d	0.175	0.232	0.254	0.289	0.099	0.206	0.208	0.170	0.311	0.246	0.169	0.170		0.21	0.31	0.000
Percent Removal: TP - Final Effluent %	98.63	98.76	97.80	97.70	99.50	98.09	97.33	98.79	97.71	97.59	99.25	98.87			99.50	0.00
Nitrogen Series		-						-		•			_			
Raw: Avg TKN - Raw Sewage mg/L	44.10	59.00	37.00	26.60	42.50	44.20	31.20	56.30	58.00	47.00	58.60	36.80		45.11	59.00	0.00
Raw: # of samples of TKN - Raw Sewage	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	12.00			0.00
Eff: Avg TAN - Final Effluent mg/L	0.10	0.10	0.10 <	0.10 <	0.10 <	0.18 <	0.10 <	0.10 <	0.10	0.10	0.10 <	0.13	<	0.11 <	0.18	2.40
Eff: # of samples of TAN - Final Effluent	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	52.00			0.00
Loading: TAN - Final Effluent kg/d	< 0.233 <	0.232 <	0.267 <	0.258 <	0.207 <	0.404 <	0.217 <	0.185 <	0.187 <	0.190 <	0.195 <	0.259	<	0.24 <	0.40	0.000
Eff: Avg NO3-N - Final Effluent mg/L	25.25	26.75	20.12	22.03	27.10	29.63	27.25	26.70	29.63	30.58	27.66	25.20		26.49	30.58	0.00
Eff: # of samples of NO3-N - Final Effluent	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	52.00			0.00
Eff: Avg NO2-N - Final Effluent mg/L	0.12	0.11	0.08	0.12	0.18	0.17	0.16	0.11	0.12	0.10	0.09	0.39		0.14	0.39	0.00
Eff: # of samples of NO2-N - Final Effluent	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	52.00			0.00
Disinfection																
Eff: GMD E. Coli - Final Effluent cfu/100mL	2.38	1.68	2.00	1.68	2.00	2.00	2.00	1.74	2.00	1.68	2.00	2.00				200.00
Eff: # of samples of E. Coli - Final Effluent	4.00	4.00	5.00	4.00	5.00	4.00	4.00	5.00	4.00	4.00	5.00	4.00	52.00			0.00

2022 Annual Performance Report Shelburne Wastewater Treatment Plant Amended Environmental Compliance Approval No. 6413-ABLQQS

Appendix B

Sludge Haulage Summary, Sludge Quality, and Septage Receiving

2022

Shelburne WWTP - Daily Haulage Summary									
Date	Site	NASM #	Sludge Hauled (m³)						
Мау									
13-May-22	Harvey Martin	24387	799.00						
17-May-22	Harvey Martin	24387	306.00						
18-May-22	Harvey Martin	24387	815.00						
20-May-22	Harvey Martin	24387	771.00						
	June								
20-Jun-22	Leroy May	25079	1138.00						
21-Jun-22	Leroy May	25079	953.00						
22-Jun-22	Leroy May	25079	843.00						
	Nove	mber							
14-Nov-22	Gary Horst	25247	594.00						
15-Nov-22	Gary Horst	25247	739.00						
16-Nov-22	Gary Horst	25247	893.00						
17-Nov-22	Gary Horst	25247	954.00						
18-Nov-22	Gary Horst	25247	358.00						
		Total	9163.00						

Ontario Clean Water Agency Biosolids Quality Report - Liquid Digestor Type: AEROBIC Solids and Nutrients

Facility: SHELBURNE WASTEWATER TREATMENT FACILITY

Works: 5773

Period: 01/01/2022 to 12/01/2022

Facility Works Number: 1.10000659E8

Facility Name: SHELBURNE WASTEWATER TREATMENT FACILITY

Facility Owner: Corporation/Company: The Corporation of the Town of Shelburne

Facility Classification: Class 3 Wastewater Treatment
Receiver: Besley Drain to Boyne Creek

Service Population: 8994.0
Total Design Capacity: 3420.0 m3/day

Period Being Reported: 01/01/2022 12/01/2022

Month	Total Sludge Hauled (m3)	Avg. Total Solids (mg/L)	Avg. Volatile Solids (mg/L)	Avg. Total Phosphorus (mg/L)	Ammonia (mg/L)	Nitrate (mg/L)	Nitrite (mg/L)	TKN (mg/L)	Ammonia + Nitrate (mg/L)	Potassium (mg/L)		
Site	SHELBURNE WASTEWATER	R TREATMENT FA	CILITY									
Station	Isiq Station only											
Parameter Short Name	HauledVol	TS	vs	ТР	NH3p_NH4p_N	NO3-N	NO2-N	TKN	calculation in	К		
T/s	IH Month.Total		Lab Published Month Mean	Lab Published Month Mean	Lab Published Month Mean		Lab Published Month Mean	Lab Published Month Mean	report - no T/S	Lab Published Month Mean		
Jan		21,000.000		440.000	135.000	0.300	1.600	1,010.000	67.650	72.000		
Feb		20,300.000		120.000	133.000	0.300	1.500	857.000	66.650	460.000		
Mar		18,200.000		330.000	133.000	0.300	2.200	1,010.000	66.650	62.000		
Apr		11,100.000		220.000	150.000	0.300	2.000	645.000	75.150	63.000		
May	2,691.000	22,400.000		500.000	204.000	0.300	1.100	1,150.000	102.150	73.000		
Jun	2,934.000	21,100.000		410.000	206.000	0.300	0.200	1,080.000	103.150	66.000		
Jul		17,400.000		400.000	35.900	0.300	0.300	670.000	18.100	74.000		
Aug		21,900.000		320.000	55.900	0.300	1.200	905.000	28.100	62.000		
Sep		28,000.000		580.000	290.000	0.300	0.500	1,270.000	145.150	74.000		
Oct		26,900.000		550.000	295.000	0.300	0.600	1,330.000	147.650	70.000		
Nov	3,538.000	25,000.000		450.000	336.000	0.300	2.200	1,220.000	168.150	62.000		
Dec		32,400.000		570.000	159.000	0.300	2.400	1,780.000	79.650	100.000		
Average	3,054.333	22,141.667		407.500	177.733	0.300	1.317	1,077.250	89.017	103.167		
Total	9,163.000	265,700.000	0.000	4,890.000	2,132.800	3.600	15.800	12,927.000	1,068.200	1,238.000		

Ontario Clean Water Agency Biosolids Quality Report - Liquid Digestor Type: AEROBIC **Metals and Criteria**

Facility: SHELBURNE WASTEWATER TREATMENT FACILITY

Works: 5773

Period: 01/01/2022 to 12/01/2022

Note: all parameters in this report will be derived from the Bslq Station

Month	Arsenic (mg/L)	Cadmium (mg/L)	Cobalt (mg/L)	Chromium (mg/L)	Copper (mg/L)	Mercury (mg/L)	Molybdenum (mg/L)	Nickel (mg/L)	Lead (mg/L)	Selenium (mg/L)	Zinc (mg/L)
Site	SHELBURNE WA	STEWATER TREAT	TMENT FACILITY								
Station	Bslq Station only	1									
Parameter Short Name		Cd	Co	Cr	Cu					Se	Zn
T/s	Lab Published Month Mean			Lab Published Month Mean	Lab Published Month Mean	Lab Published Month Mean					
Jan	0.300	0.014	0.060	0.690	6.700	0.008	0.220	0.380	0.400	0.100	8.000
Feb	0.100	0.005	0.010	0.060	0.200	0.001	0.050	0.050	0.100	0.100	1.000
Mar	0.200	0.008	0.040	0.410	4.700	0.006	0.160	0.230	0.300	0.100	5.000
Apr	0.200	0.005	0.030	0.260	3.300	0.004	0.100	0.160	0.200	0.100	3.000
May	0.300	0.010	0.050	0.550	6.600	0.011	0.210	0.310	0.400	0.100	7.000
Jun	0.200	0.009	0.050	0.550	6.300	0.007	0.190	0.290	0.300	0.100	6.000
Jul	0.200	0.012	0.070	0.810	6.200	0.008	0.230	0.370	0.400	0.100	8.000
Aug	0.200	0.011	0.070	0.820	5.600	0.007	0.110	0.400	0.500	0.100	9.000
Sep	0.300	0.018	0.100	1.200	8.600	0.016	0.290	0.570	0.600	0.100	12.000
Oct	0.300	0.018	0.110	1.200	8.500	0.014	0.280	0.580	0.600	0.100	13.000
Nov	0.300	0.013	0.080	0.920	7.100	0.010	0.230	0.460	0.500	0.100	10.000
Dec	0.400	0.017	0.080	0.860	9.000	0.021	0.330	0.470	0.600	0.100	9.000
Average	0.250	0.012	0.063	0.694	6.067	0.009	0.200	0.356	0.408	0.100	7.583
Max. Permissible Metal Concentrations (mg/kg of	170.000	34.000	340.000	2,800.000	1,700.000	11.000	94.000	420.000	1,100.000	34.000	4,200.000
Metal Concentrations in Sludge (mg/kg)	11.291	0.527	2.823	31.351	273.993	0.425	9.033	16.071	18.442	4.516	342.492

Ontario Clean Water Agency Time Series Info Report

Report extracted 03/17/2023 14:24 From: 01/01/2022 to 31/12/2022

Facility Org Number: 5773
Facility Works Number: 110000659

Facility Name: SHELBURNE WASTEWATER TREATMENT FACILITY

Facility Owner: Corporation/Company: The Corporation of the Town of Shelburne

Facility Classification: Class 3 Wastewater Treatment Receiver: Besley Drain to Boyne Creek

Service Population: 8994.0
Total Design Capacity: 3420.0 m3/day

	01/2022	02/2022	03/2022	04/2022	05/2022	06/2022	07/2022	08/2022	09/2022	10/2022	11/2022	12/2022	Total	Avg	Max	Min
Septage / Biochemical Oxygen Demand: BOD5 - mg/L																
Count Lab	1	0	2	1	2	0	2	2	0	1	1	2	14			
Max Lab	7000		6610	5470	5890		7620	6200		1760	1660	8200			8200	
Mean Lab	7000		5975	5470	5470		6475	5150		1760	1660	7260		5467.857		
Min Lab	7000		5340	5470	5050		5330	4100		1760	1660	6320				1660
Septage / Carbonaceous Biochemical Oxygen Demand: CBC	DD5 - mg/L															
Count Lab	1	0	2	1	2	0	2	2	0	1	1	2	14			
Max Lab	5660		5110	5900	4570		7150	6250		1410	1460	6350			7150	
Mean Lab	5660		4835	5900	4515		5910	5485		1410	1460	6115		4867.857		
Min Lab	5660		4560	5900	4460		4670	4720		1410	1460	5880			1 1	1410
Septage / Septage Received - m ³																
Count IH	1	0	2	1	2	0	2	2	0	1	1	2	14			
Total IH	4.546		9.092	4.546	10.001		10.91	10.91		4.546	13.64	9.092	77.283			
Max IH	4.546		4.546	4.546	5.455		5.455	5.455		4.546	13.64	4.546			13.64	
Mean IH	4.546		4.546	4.546	5.001		5.455	5.455		4.546	13.64	4.546		5.52		
Min IH	4.546		4.546	4.546	4.546		5.455	5.455		4.546	13.64	4.546				4.546
Septage / Total Kjeldahl Nitrogen: TKN - mg/L																
Count Lab	1	0	2	1	2	0	2	2	0	1	1	2	14			
Max Lab	840		821	589	1110		1020	956		788	305	580			1110	
Mean Lab	840		645.5	589	898		1020	955		788	305	537		759.5		
Min Lab	840		470	589	686		1020	954		788	305	494				305
Septage / Total Phosphorus: TP - mg/L																
Count Lab	1	0	2	1	2	0	2	2	0	1	1	2	14			
MaxLab	88.6		139	76.8	188		200	147		140	120	88.6			200	
Mean Lab	88.6		110	76.8	111.85		197.5	143.5		140	120	81.3		122.407		
Min Lab	88.6		81	76.8	35.7		195	140		140	120	74				35.7
Septage / Total Suspended Solids: TSS - mg/L																
Count Lab	1	0	2	1	2	0	2	2	0	1	1	2	14			
Max Lab	8360		15500	10700	23300		28200	19700		17600	12100	26200			28200	
Mean Lab	8360		13250	10700	20400		26500	18700		17600	12100	19800		17575.71		
Min Lab	8360		11000	10700	17500		24800	17700		17600	12100	13400				8360

2022 Annual Performance Report Shelburne Wastewater Treatment Plant Amended Environmental Compliance Approval No. 6413-ABLQQS

Appendix C

Calibration Reports

2022

VERIFICATION REPORT PRESSURE MEASUREMENT

Customer Name:	OCWA-Georgian I	Highlands Region		300 Centennial R	łd.
Plant Name:	Shelburne WWTP		Site/Plant Address:	Shelburne,ON LO	· ·
	Official file WWW IT			Oncibarric, Or Lo	710-1
Dev	ice Information		Se	ervice Information	
Make:	Magnehelic		Date:	August 23, 2022	
Model:	2000 Series		Report No:	CO1360-2208-52)
Order No:	NA		Job No:	CO1360-2208	
Serial No:	NA			001000 2200	
Tag:	NA			Details	
Job Location:	To digester		- Unit:	psi psi	
Asset ID	0000062546		Range:	0-15	
NOSCE ID	0000002010		Current Output:	NA	
Inst. Reading	AS FOUND	AS LEFT	4 mA Set Point	0	
Pressure(psi)	8.7	0	20 mA Set Point	15	
1 1000010(p01)	<u> </u>			.0	
Mainte	enance Checklist			Remarks	
Visual Inspection:	☑ OK	□ NOT OK			
Electrical Inspection:	☑ OK	□ NOT OK			
Sensor Installation:	☑ ок	\square NOT OK			
Transmitter Installation:	⊍ ок	\square NOT OK			
		Instrument Test Info	ormation and Results		
Input (%)	Calculated Pressure (psi)	Calculated Flow(I/sec)	Measure Pressure (psi)	Display flow(l/sec)	Deviation (psi)
0.00	0.00	0.00	0.02	0.00	0.02
100.00	15.00	1,000.00	14.92	1000.00	-0.08
	Informa	tion of Tools used for	Verification of the Instruments	<u> </u>	·
Details		ol/Kit 1	Tool/Kit 2	Too	ol/Kit 2
Device Description:	Digital Pressure G		N/A		N/A
Manufacturer:	Martel Electronics		N/A		N/A
Model No:	BG-PI-PRO-500G		N/A		N/A
			·		
Overall Test Result:	✓ Pa	ssed	Fail	□ Not \	Verified
Overall Remarks:	Measurement Wo	rks within Specification	on. Limited verification		
Service Technician :	Tushar Patel		Stamp/Signature	8/	/
Printed Date:	August 23, 2022				
		End	l of Report	V	/ersion: 19-12

VERIFICATION REPORT PRESSURE MEASUREMENT

Customer Name:	OCWA-Georgian	Highlands Region	01. (014.1.1	300 Centennial R	d.		
Plant Name:	Shelburne WWTP		Site/Plant Address:	Shelburne,ON L0	•		
	_						
<u>Dev</u>	rice Information		Se	ervice Information			
Make:	Magnehelic		Date:	August 23, 2022			
Model:	2000 Series		Report No:	CO1360-2208-53			
Order No:	NA		Job No:	CO1360-2208			
Serial No:	NA						
Tag:	NA			<u>Details</u>			
Job Location:	Aeration flow		Unit:	psi			
Asset ID	0000062544		Range:	0-15			
7,0001 12	0000002011		Current Output:	NA			
Inst. Reading	AS FOUND	AS LEFT	4 mA Set Point	0			
Pressure(psi)	9.6	9.69	20 mA Set Point	15			
1 1033d10(p3i)	3.0	0.00	20 110 (001) 0111	10			
Maint	enance Checklist			Remarks			
Visual Inspection:	☑ OK	☐ NOT OK					
Electrical Inspection:	☑ OK	□ NOT OK					
Sensor Installation:	✓ OK	□ NOT OK					
Transmitter Installation:	☑ ok	□ NOT OK					
	.						
		Instrument Test Info	ormation and Results				
Input (%)	Calculated Pressure (psi)	Calculated Flow(l/sec)	Measure Pressure (psi)	Display flow(l/sec)	Deviation (psi)		
0.00	0.00	0.00	0.10	0.00	0.10		
100.00	15.00	1,000.00	14.88	1000.00	-0.12		
100.00	ı	· · · · · · · · · · · · · · · · · · ·	Verification of the Instruments	1000.00	0		
 Details		ol/Kit 1	Tool/Kit 2	Too	ol/Kit 2		
	Digital Pressure G		N/A		V/A		
Device Description:	Martel Electronics	auge	N/A N/A		N/A		
Manufacturer:	BG-PI-PRO-500G		N/A N/A		V/A		
Model No:	BG-PI-PRO-500G		IN/A	ļ ļ	N/A		
Overall Test Result:	✓ Pa	ssed	Fail	□ Not \	Verified		
	Moscuroment We	rks within Specificatio	n. Limited verification				
Overall Remarks:	Weasurement Wo	rks within Specification	iii. Liililled verilication				
Service Technician : Printed Date:	Tushar Patel August 23, 2022		Stamp/Signature	8/			
	agast 20, 2022	End	of Report		/ersion: 19-12		
		End	ι οι ιχεροιι	V	e151011. 19-12		

VERIFICATION REPORT - **KHRONE**ELECTRO-MAGNETIC FLOW MEASUREMENT

Customer Name:	OCWA-Georgian	Highlands Region	- Site/Plant Ad	droop:	300 Centennial Rd		
Plant Name:	Shelburne WWTF		Site/Flam At	Juless.	Shelburne,ON L0N	1S4	
			_				
<u>Devi</u>	ce Information			<u>Servi</u>	ce Information		
Make:	Khrone		Date:		August 23, 2022		
Model:	IFC 010D		Report No:		CO1360-2208-54		
Order Code:	NA		Job No:		CO1360-2208		
Serial No.:	A9915693		-				
Tag:	FIT01		_	F	ow Details		
Job Location:	WAS Flow		_ Unit:	<u></u> .	l/sec		
Asset ID:	0000062478		Flow Range:		0-27.8		
Asset ID.	0000002476		Current Outp		4-20 mA		
So	nsor Details		4 mA Set Po		0		
	3"		20 mA Set F		27.8		
Line size:	5.1670		20 IIIA Set F	- OII II	21.0		
GKL:			- Inst Dandin	_	AO FOLIND	40 LEET	
Mounting:	Remote		Inst. Reading	_	AS FOUND	AS LEFT	
			TOTALIZER	` '	606791	606792	
			FLOW (I/sec	;)	3.602	3.144	
	nance Checklist			Re	marks		
Visual Inspection:	☑ OK	☐ NOT OK					
Electrical Inspection:	☑ OK	☐ NOT OK					
Sensor Installation:	☑ ok	\square NOT OK					
Transmitter Installation:	☑ ok	□ NOT OK					
	<u> </u>	Instrument Test Inf	ormation and Resu	ılts			
Set-Point as Per Calibration KIT	Calculated Flow (I/sec)	Calculated O/P (mA)	UUT Display (l/sec)	UUT Measured Output (mA)	Devia (I/se		
0	0.00	4.00	0.016	4.01	0.0	12	
A	1.98	5.14	1.971	5.13	-0.0		
В	3.96	6.28	3.942	6.26	-0.0		
C	7.92	8.56	7.935	8.52	0.0		
D	19.79	15.39	19.810	15.33	0.0		
	10.70	10.00	10.010	10.00	0.0		
	Informa	ation of Tools used for	r Verification of the	Instruments			
Details	Too	ol/Kit 1	Tool/l		Tool/I		
Device Description:	Calibrator		Electrical Multime	ter	N/A	A	
Manufacturer:	Khrone		Fluke		N/A	A	
Model No:	GS8B		179		N/A	A	
	* Refer Cali	ibration Tools Certific	ates submittal for n	nore Information			
/	- D			m_:i	Not Va	wif: ~ ~!	
Verification Test Result:	✓ Pa	assed		Fail	☐ Not Ve	ennea	
Overall Remarks:	Measurement Wo	orks within Specification	on.				
Service Technician :	Sanket Trada		Stamp.	/Signature		/	
Printed Date:	August 23, 2022						
	· · · · · · · · · · · · · · · · · · ·	End	of Report		Version: 1	19-12	

VERIFICATION REPORT - **KHRONE**ELECTRO-MAGNETIC FLOW MEASUREMENT

	J., -						
Customer Name:	OCWA-Georgian	Highlands Region			300 Centennial Rd		
Plant Name:	Shelburne WWTF		Site/Plant Ad	ddress:	Shelburne,ON LON		
			_				
<u>Devi</u>	ice Information			<u>Servi</u>	ce Information		
Make:	Khrone		Date:		August 23, 2022		
Model:	IFC 010D		Report No:		CO1360-2208-55		
Order Code:	NA		Job No:		CO1360-2208		
Serial No.:	A9915978		_				
Tag:	FIT02		_	<u>F</u>	low Details		
Job Location:	Tank 1 RAS Flow	1	Unit:		l/sec		
Asset ID:	0000062479		Flow Range:		0-66.7		
			Current Outp		4-20 mA		
	ensor Details		4 mA Set Po		0		
Line size:	4"		20 mA Set F	Point	66.7		
GKL:	5.243		_				
Mounting:	Remote		Inst. Reading	=	AS FOUND	AS LEFT	
			TOTALIZER		9537781	9537784	
			FLOW (I/sec	;)	15.99	14.43	
Mainte	enance Checklist			Do	emarks		
Visual Inspection:	✓ OK	□ NOT OK		IXE	illaiks		
Electrical Inspection:	☑ OK	☐ NOT OK					
Sensor Installation:	☑ ok	☐ NOT OK					
Transmitter Installation:	□ ok □ ok	□ NOT OK					
Transmitter metallation.		_ NOT OR	<u> </u>				
		Instrument Test Inf	ormation and Resu	ılts			
Set-Point as Per Calibration	Calculated Flow	Calculated O/P	UUT Display	UUT	Devia	ation	
KIT	(l/sec)	(mA)	(l/sec)	Measured	(I/se		
				Output (mA)			
0	0.00	4.00	0.15	4.00	0.1		
A	3.14	4.75	3.17	4.77	0.0		
B	6.28	5.51	6.44	5.53	0.1		
С	12.55	7.01	12.58	7.03	0.0		
D	31.38	11.53	31.40	11.39	0.0		
Е	62.76	19.05	62.73	19.01	-0.	03	
	Informa	ation of Tools used for	r Verification of the	Instruments			
Details	То	ol/Kit 1	Tool/I	Kit 2	Tool/	Kit 3	
Device Description:	Calibrator		Electrical Multime	ter	N/	'A	
Manufacturer:	Khrone		Fluke		N/	'A	
Model No:	GS8B		179		N/	'A	
	* Refer Cal	ibration Tools Certific	ates submittal for n	nore Information			
Verification Test Result:	✓ Pa	assed		Fail	☐ Not Ve	erified	
Overall Remarks:	Measurement Wo	orks within Specification	on.				
			2	/O:t-		/	
Service Technician :	Sanket Trada		Stamp/Signature				
Printed Date:	August 23, 2022	End	of Report		Version:	10-12	
		Lilu	UL INCOULL		V CI SIUI I.	10 14	

VERIFICATION REPORT - KHRONE ELECTRO-MAGNETIC FLOW MEASUREMENT

Customer Name:	OCWA-Georgian	Highlands Region	- Site/Plant Ad	droce:	300 Centennial Rd,		
Plant Name:	Shelburne WWTF)	Site/Flant At	duiess.	Shelburne,ON L0N	1S4	
			_				
<u>Devi</u>	ce Information			<u>Serv</u>	ice Information		
Make:	Khrone		Date:		August 23, 2022		
Model:	IFC 010D		Report No:		CO1360-2208-56		
Order Code:	NA		Job No:		CO1360-2208		
Serial No.:	A9915977		_				
Tag:	FIT03		-	F	low Details		
Job Location:	Tank 2 RAS Flow		- Unit:	_	l/sec		
Asset ID:	0000062480		Flow Range	•	0-66.7		
			Current Out		4-20 mA		
Se	nsor Details		4 mA Set Po		0		
Line size:	4"		20 mA Set I		66.7		
GKL:	5.318		_	Olive	00.1		
Mounting:	Remote		Inst. Reading	a	AS FOUND	AS LEFT	
wounting.	remote		TOTALIZER	-	9924547	9924551	
			FLOW (I/sec	;)	17.87	16.27	
Mainte	nance Checklist			R	emarks		
Visual Inspection:	✓ OK	□ NOT OK		170	emarks		
Electrical Inspection:	☑ OK	□ NOT OK					
Sensor Installation:	☑ ok						
	☑ OK ☑ OK						
Transmitter Installation:	□ OK	□ NOT OK					
		Instrument Test Inf	ormation and Resu	ılte			
		monument restini					
Set-Point as Per Calibration	Calculated Flow	Calculated O/P	UUT Display	UUT	Devia	tion	
KIT	(I/sec)	(mA)	(l/sec) Measured Output (mA) (l/sec)			c)	
						•	
0	0.00	4.00	0.20	4.01	0.2		
A	3.18	4.76	3.23	4.80	0.0		
В	6.37	5.53	6.41	5.57	0.0		
С	12.73	7.05	12.75	7.03	0.0		
D	31.83	11.63	31.87	11.65	0.0		
E	63.65	19.27	63.73	19.31	0.0	8	
	Informa	ition of Tools used for	r Verification of the	Instruments			
Details	Too	ol/Kit 1	Tool/	Kit 2	Tool/ł	Kit 3	
Device Description:	Calibrator		Electrical Multime		N/A		
Manufacturer:	Khrone		Fluke		N/A	A	
Model No:	GS8B		179		N/A		
	* Refer Cali	ibration Tools Certific	ates submittal for r	nore Information			
Verification Test Result:	☑ Pa	assed		Fail	☐ Not Ve	rified	
	Measurement Wo	rks within Specification	on.				
Overall Remarks:							
						,	
Service Technician :	Sanket Trada		Stamp	/Signature			
Printed Date:	August 23, 2022						
	<u>-</u>	End	of Report		Version: 1	9-12	

VERIFICATION REPORT - KHRONE ELECTRO-MAGNETIC FLOW MEASUREMENT

Customer Name:	OCWA-Georgian		Site/Plant Ad	ddress:	300 Centennial Rd,	
Plant Name:	Shelburne WWTF)	_		Shelburne,ON L0N	1S4
	ce Information			<u>Servi</u>	ce Information	
Make:	Khrone		Date:		August 23, 2022	
Model:	IFC 010D		Report No:		CO1360-2208-57	
Order Code:	NA		Job No:		CO1360-2208	
Serial No.:	A9915979		_			
Гад:	FIT04		_	<u>F</u>	low Details	
Job Location:	Truck Fill Flow		Unit:		l/sec	
Asset ID:	NA		Flow Range	:	0-75	
			Current Outp		4-20 mA	
Se	nsor Details		4 mA Set Po		0	
Line size:	4"		20 mA Set I	Point	75	
GKL:	5.045		_			
Mounting:	Remote		Inst. Reading	n	AS FOUND	AS LEFT
viouriurig.	rtomoto		TOTALIZER		84967	84968
			FLOW (I/sed	` '	0	0
			I LOW (1/3ec	•)		0
Mainte	nance Checklist			Re	emarks	
Visual Inspection:	✓ OK	□ NOT OK		110	marks	
Electrical Inspection:	☑ OK	☐ NOT OK				
Sensor Installation:	☑ ok ☑ ok					
	☑ ok	□ NOT OK				
Transmitter Installation:	Ŭ OK	□ NOT OK	<u> </u>			
		Instrument Test Inf	formation and Dag	ulto		
		instrument rest ini			1	
Set-Point as Per Calibration	Calculated Flow	Calculated O/P	UUT Display	UUT	Devia	tion
KIT	(I/sec)	(mA)	(I/sec)	Measured Output (mA)	(I/se	ec)
0	0.00	4.00	0.01	4.00	0.0	1
0	0.00	4.00				
A	3.02	4.64	3.06	4.68	0.0	
<u>B</u>	6.04	5.29	6.09	5.31	0.0	
С	12.08	6.58	12.11	6.59	0.0	
D	30.19	10.44	30.08	10.36	-0.1	
E	60.39	16.88	60.27	16.83	-0.1	2
	Informa	tion of Tools used fo	r Verification of the	Instruments		
Details	•	ol/Kit 1	Tool/		Tool/ł	Cit 3
Device Description:	Calibrator	51/1 CT	Electrical Multime		N//	
Manufacturer:	Khrone		Fluke		N//	
Model No:	GS8B		179		N//	
viodel No.		bration Tools Certific		mara Information		1
	Neiei Caii	bration roots Certific	ales submillarion	nore information		
Verification Test Result:	✓ Pa	assed		Fail	☐ Not Ve	rified
	T					
	Measurement Wo	rks within Specification	on.			
Overall Remarks:						
						1
Service Technician :	Tushar Patel		Stamp	/Signature	(8)	
Printed Date:	August 23, 2022					
	. g , 	Fnd	of Report		Version: 1	9-12
		LIIU	J 10po.1		V C1 31011. 1	~ · <u>~</u>

CONTROL	Induscontrol Inc 3170 Ridgeway Drive, Unit #1 Mississauga, ON L5L 5R4	1		/ERIFICATION REI		
Customer Name:	OCWA-Georgian Highlands F	Region			300 Centennia	al Rd
Plant Name:	Shelburne WWTP	togion	-	Site/Plant Address:	Shelburne,ON	
			<u>-</u>		, , , , , , , , , , , , , , , , , , , ,	
	Device Information			<u>Servi</u>	ce Information	
Make:	Milltronics			Date:	August 23, 20	22
Model:	OCM III		='	Report No:	CO1360-2208	-58
Tag:	FIT05		_	Job No:	CO1360-2208	
Job Location:	Effluent Flow		_			
Asset ID:	000052506		-	_	low Details	
				Unit:	l/sec	
	AO FOLIND	AOLEET		Flow Range:	0-105	
Inst. Reading	AS FOUND	AS LEFT		Current Output: 4 mA Set Point	4-20 mA 0	
TOTALIZER (m3)	18757232 X 1000	18757236 X 1000	-	20 mA Set Point	105	
FLOW (l/sec)	31.29	4.07	-	20 ma Set Point	105	
	Maintenance Checklist			Remar	ks	
Visual Inspection:	☑ ok	□ NOT OK				
Electrical Inspection:	☑ ok	□ NOT OK				
		ogramming Parame		1	1 ,	, ,
Parameter	Discription	Value	Parameter	Discription		'alue
F0	Access Code	2.71828	P7	Height of Max. Head		.4820
P1	Dimension Unit (cm)	0	P32	Totalizer Multiplier	6	0
P3 P4	Exponential Device	0	P42	Head by OCM III		0
P5	Cal. Method -Ratiometric Flow Unit - I/sec	0	P45 P46	Low Flow Cut-off	9F 6	6725 cm
P6	Max Flow rate	105.0009	P46 P47	Range at Zero Head Blanking Distance		3264 cm
P0	IVIAX FIOW Tate	105.0009	P41	Dialiking Distance	30.40	5204 CIII
		Test Point	Report			
Reference Distance (cm)	Measured Distance (cm)	Calculated Flow (l/sec)	UUT Flow Display (l/sec)	Calculated (mA)	Measured (mA)	Deviaiton Full Scale (l/sec)
7.23	7.09	9.62	9.34	5.47	5.42	-0.28
6.58	6.44	8.33	8.06	5.27	5.23	-0.27
	• • • • • • • • • • • • • • • • • • • •	Calculati	l			
Flow Calculations $Q = q_{cal} (h/h_{cal})^{Exp}$ Wh Exp = 1.53, Hence, $Q = 105 (7.23/34.48)^{1.53}$ Q = 9.62	ere, Q= Discharge Flow,	qcal = max flow,	h = head, h	cal = max head		
	Ins	trument Test Inform	nation and Res	sults		
Input (%)	Calculated Flow(l/sec)	Calculated Input (mA)	Flow on UUT (I/sec)	UUT Measured Output (mA)		viation /sec)
0	0.00	4.00	0.20	4.02	(0.20
25	26.25	8.00	26.22	7.98		0.03
50	52.50	12.00	52.34	11.94		0.16
75	78.75	16.00	78.62	15.96		0.13
100	105.00	20.00	104.82	19.98	-	0.18
	Information	of Tools used for Ve	rification of the	o Instruments	•	
Davice Description:	Manufacture			Mode	ı	
Device Description:		51				
Electrical Multimeter	Fluke		L.,	179		
	* Refer Calibration	on Tools Certificates	s submittal for	more Information		
Verification Test Result:	✓ Passed			Fail	□ Not	Verified
Overall Remarks:	Program parameters verified.	Single point verifica	ation done			
Service Technician :	Sanket Trada			Stamp/Signature	R	/
Printed Date:	August 23, 2022				9	
		End of Repo	ort			

VERIFICATION REPORT - **ROSEMOUNT**ELECTRO-MAGNETIC FLOW MEASUREMENT

Customer Name:	OCWA-Georgian	Highlands Region	Cito/Diant A	ldroop.	300 Centennial Rd,		
Plant Name:	Shelburne WWTF		Site/Plant Ac	aaress:	Shelburne,ON L0N	1S4	
			_				
Devid	ce Information			Servi	ce Information		
Make:	Rosemount		Date:		August 23, 2022		
Model:	8712		Report No:		CO1360-2208-59		
Order Code:	NA		Job No:		CO1360-2208		
Serial No.:	860188157		-		001000 2200		
Tag:	FIT06		-	F	ow Details		
Job Location:	Raw sewage flow		_ Unit:	<u></u>	l/sec		
Asset ID:	NA		Flow Range:		0-150		
Asset ID.	INA		Current Outp		4-20 mA		
Sei	nsor Details		4 mA Set Po		0		
Line size:	8"		20 mA Set F		150		
Flow Cal Tube No.:	10255059110000	1 1	_ ZO IIIA GELT	Ollit	130		
	Remote	1.1	Inst. Reading	~	AC EOLIND	AS LEFT	
Mounting:	Remote		TOTALIZER		AS FOUND 882766016	882761472	
			FLOW (L/SE	` '	0.0	30.2	
			FLOW (L/SE	:0)	0.0	30.2	
Mainta	nance Checklist			D.	emarks		
Visual Inspection:	✓ OK	□ NOT OK		110	illaiks		
Electrical Inspection:	☑ OK ☑ OK						
Sensor Installation:	☑ ok						
Transmitter Installation:	□ ok □ ok						
Transmitter installation.	□ OK	□ NOT OK					
		Instrument Test Inf	ormation and Page	ılte			
		mstrument rest mi					
Test-Point as Per Calibration	Calculated Flow	Calculated O/P	UUT Display	UUT	Devia	tion	
KIT	(FPS)	(mA)	(FPS)	Measured Output (mA)	(FPS	S)	
0.00	0.00	4.00	0.00	4.00	0.0		
3.00	3.00	5.60	3.00	5.60	0.0		
10.00	10.00	9.33	9.99	9.34	-0.0		
30.00	30.00	20.00	29.99	19.98	-0.0)1	
		tion of Tools used for			I		
Details		ol/Kit 1	Tool/l		Tool/k		
Device Description:	Calibrator		Electrical Multime	ter	N/A	4	
Manufacturer:	Rosemount		Fluke		N/A		
Model No:	8714D		179		N/A	4	
	* Refer Cali	bration Tools Certific	ates submittal for n	nore Information			
Verification Test Result:	✓ Pa	assed		Fail	□ Not Ve	rified	
Verification Test Result.	<u> </u>	155 C U		ı alı	Not ve	illea	
	Measurement Wo	rks within Specification	on.				
Overall Remarks:							
	- 						
						,	
Service Technician :	Tushar Patel		Stamp	/Signature			
					(0)		
Printed Date:	August 23, 2022						
			End of Report		V	ersion: 19-12	

VERIFICATION REPORT - KHRONE ELECTRO-MAGNETIC FLOW MEASUREMENT

Customer Name:	OCWA-Georgian	Highlands Region	- Site/Plant Ac	ddrooo;	300 Centennial Ro	Ι,
Plant Name:	Shelburne WWTF	D	Sile/Flaili Ac	uress.	Shelburne,ON L0N	N 1S4
Devi	ce Information			Servi	ce Information	
Make:	Khrone		Date:		August 23, 2022	
Model:	IFC 100W		Report No:		CO1360-2208-60	
Order Code:	NA		Job No:		CO1360-2208	
Serial No.:	C16501184		_			
Tag:	FIT014(UPPER)			F	low Details	
Job Location:	Upper filter		_ Unit:	<u>-</u>	l/sec	
Asset ID:	NA		Flow Range:		0-200	
Asset ID.	IVA		Current Outp		4-20 mA	
90	nsor Details		4 mA Set Po		0	
	10"		20 mA Set F		200	
Line size:			20 IIIA Set F	-OITIL	200	
GKL:	8.6872		Leat Danilla	_	40 501 1110	40 LEET
Mounting:	Remote		Inst. Reading	_	AS FOUND	AS LEFT
			TOTALIZER	` '	2771955.455	2771960.260
			FLOW (I/sec	;)	0.00	0.00
	<u> </u>		1			
	nance Checklist			Re	emarks	
Visual Inspection:	☑ OK	☐ NOT OK				
Electrical Inspection:	☑ OK	☐ NOT OK				
Sensor Installation:	⊡ ок	\square NOT OK				
Transmitter Installation:	☑ OK	□ NOT OK				
		Instrument Test Inf	ormation and Resu	ılts		
Cat Daint as Day Calibration	Coloulated Flour	Coloulated O/D	LILIT Dioplay	UUT	Dovi	otion
Set-Point as Per Calibration KIT	Calculated Flow	Calculated O/P	UUT Display	Measured	Devi	
KH	(l/sec)	(mA)	(l/sec)	Output (mA)	(l/s	e c)
0	0.00	4.00	0.00	4.00	0.0	00
А	32.49	6.60	32.57	6.64	0.0	08
В	64.99	9.20	65.12	9,22	0.	
C	129.98	14.40	130.08	14.42	0.	
				l		
Datalla		ation of Tools used for	1		Tabl	/IX:+ 2
Details		ol/Kit 1	Tool/k Electrical Multime		Tool	
Device Description:	Calibrator			ter	N _i	
Manufacturer:	Khrone		Fluke		N _i	
Model No:	GS8B		179		N.	/A
	* Refer Cal	ibration Tools Certific	ates submittal for n	nore Information		
Verification Test Result:	✓ Pa	assed		Fail	□ Not Vo	erified
Tomodion root Roodii.						
	Measurement Wo	orks within Specification	on.			
Overall Remarks:						
	l					
Service Technician :	Sanket Trada		Stamp	/Signature		
2300 .00			_ Starrip	- Orginaturo	(8/	
D					9	
Printed Date:	August 23, 2022					
		End	of Report		Version:	19-12

VERIFICATION REPORT - KHRONE ELECTRO-MAGNETIC FLOW MEASUREMENT

Customer Name: Plant Name:	OCWA-Georgian Shelburne WWTP		Site/Plant Ac	ldress:	300 Centennial Ro Shelburne,ON LON		
<u>Devi</u>	ce Information			<u>Servi</u>	ce Information		
Make:	Khrone		Date:		August 23, 2022		
Model:	IFC 100W		Report No:		CO1360-2208-61		
Order Code:	NA		Job No:		CO1360-2208		
Serial No.:	C16501544		_				
Tag:	FIT014(LOWER)		-	F	low Details		
Job Location:	Lower filter		Unit:	<u>-</u>	l/sec		
Asset ID:	NA		Flow Range:		0-200		
Asset ID.	INA		_		4-20 mA		
Co	naar Dataila		Current Outp 4 mA Set Po		0		
	nsor Details						
Line size:	10"		20 mA Set F	Point	200		
GKL:	8.2852		-				
Mounting:	Remote		Inst. Reading		AS FOUND	<u>AS LEFT</u>	
			TOTALIZER		3287077.102	3287079.287	
			FLOW (I/sec)	0.00	0.00	
	nance Checklist			Re	emarks		
Visual Inspection:	☑ OK	□ NOT OK					
Electrical Inspection:	☑ OK	□ NOT OK					
Sensor Installation:	⊡ ок	\square NOT OK					
Transmitter Installation:	☑ ok	\square NOT OK					
Instrument Test Information and Results							
Set-Point as Per Calibration KIT	Calculated Flow (I/sec)	Calculated O/P (mA)	' ' Measured			Deviation (I/sec)	
0	0.00	4.00	0.00	4.00	0.00		
	30.99	6.48	31.13	6.52		14	
 B	61.98	8.96	62.16	9.01		18	
С	123.96	13.92	124.16	13.95	0	20	
	Informa	tion of Tools used for	Verification of the	Instruments			
Details	Too	ol/Kit 1	Tool/ł	Kit 2	Tool	/Kit 3	
Device Description:	Calibrator		Electrical Multime	ter	N.	/A	
Manufacturer:	Khrone		Fluke		N.	/A	
Model No:	GS8B		179		N.	/A	
	* Refer Cali	bration Tools Certification	ates submittal for n	nore Information			
Verification Test Result:	☑ Pa	ssed		Fail	☐ Not V	erified	
Overall Remarks:	Measurement Wo	rks within Specification	on.				
Service Technician :	Sanket Trada		Stamp	/Signature	8		
Printed Date:	August 23, 2022						
		End	of Report		Version:	19-12	

Induscontrol Inc 3170 Ridgeway Drive, Unit #11 Mississauga, ON L5L 5R4

VERIFICATION REPORT - ABB ELECTRO-MAGNETIC FLOW MEASUREMENT

Customer Name:	OCWA-Georgian	Highlands Region	- Site/Plant Ad	ldroop.	300 Centennial Rd,		
Plant Name:	Shelburne WWTF)	Sile/Plant At	iuress.	Shelburne,ON L0N 1S4		
			_		·		
<u>Devi</u>	ce Information			Serv	ice Information		
Make:	ABB		Date:		August 23, 2022		
Model:	MagMaster		Report No:		CO1360-2208-62		
Order Code:	NA		Job No:		CO1360-2208		
Serial No.:	3K620000015306	3	_				
Tag:	FIT07		-	F	low Details		
Job Location:	Storm Flow		Unit:	_	l/sec		
Asset ID:	NA		Flow Range:		0-200		
7.0001.12.			Current Outp		4-20 mA		
Se	nsor Details		4 mA Set Po		0		
Line size:	10"		20 mA Set F		200		
Mounting:	Remote						
g.	. 10010		Inst. Reading	י	AS FOUND	AS LEFT	
			TOTALIZER	-	818813	818814	
			FLOW (I/sec		0.00	0.00	
			1 2011 (1/000	')	0.00	0.00	
Mainte	nance Checklist			Re	emarks		
Visual Inspection:	☑ OK	☐ NOT OK					
Electrical Inspection:	☑ ok	☐ NOT OK					
Sensor Installation:	⊡ ок	☐ NOT OK					
Transmitter Installation:	☑ ok	□ NOT OK					
Transmitter installation.	_ 010	_ NOT OR					
		Instrument Test Info	ormation and Resu	ılts			
	0 1 1 1 151	0.1.1.10/D	LIUT Diseases	UUT	Davida	· · · · · · · · · · · · · · · · · · ·	
Flow Input (%)	Calculated Flow (I/sec)	Calculated O/P (mA)	UUT Display (l/sec)	Measured	Deviation (I/se		
	(1/360)	(IIIA)		Output (mA)			
0.00	0.00	4.00	0.00	4.00	0.0		
25.00	50.00	8.00	49.98	7.98	-0.0	2	
50.00	100.00	12.00	99.99	11.99	-0.0	1	
75.00	150.00	16.00	150.01	16.01	0.0	1	
100.00	200.00	20.00	200.00	20.01	0.0	0	
	Informa	ation of Tools used for	Verification of the	Instruments			
Details		ol/Kit 1	Tool/		Tool/k	Cit 3	
Device Description:	Electrical Multime		N//		N/A		
Manufacturer:	Fluke		N/A		N/A		
Model No:	179		N//		N/A		
WIOGET NO.		ibration Tools Certifica				1	
	Refer da	ibration roots octanoe	ates submittal for fi	nore information			
Verification Test Result:	✓ Pa	assed		Fail	☐ Not Ve	rified	
	Measurement Wo	orks within Specification	<u> </u>				
Overall Remarks:	Wedsurement vve	ones within openioalic)				
	_						
Service Technician :	Sanket Trada		Stamp	/Signature	()		
					0		
Printed Date:	August 23, 2022						
			End of Report		Ve	ersion: 19-12	

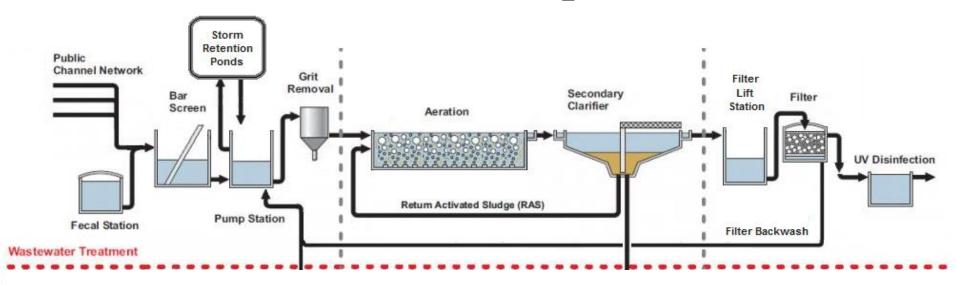
Induscontrol Inc 3170 Ridgeway Drive, Unit #11 Mississauga, ON L5L 5R4

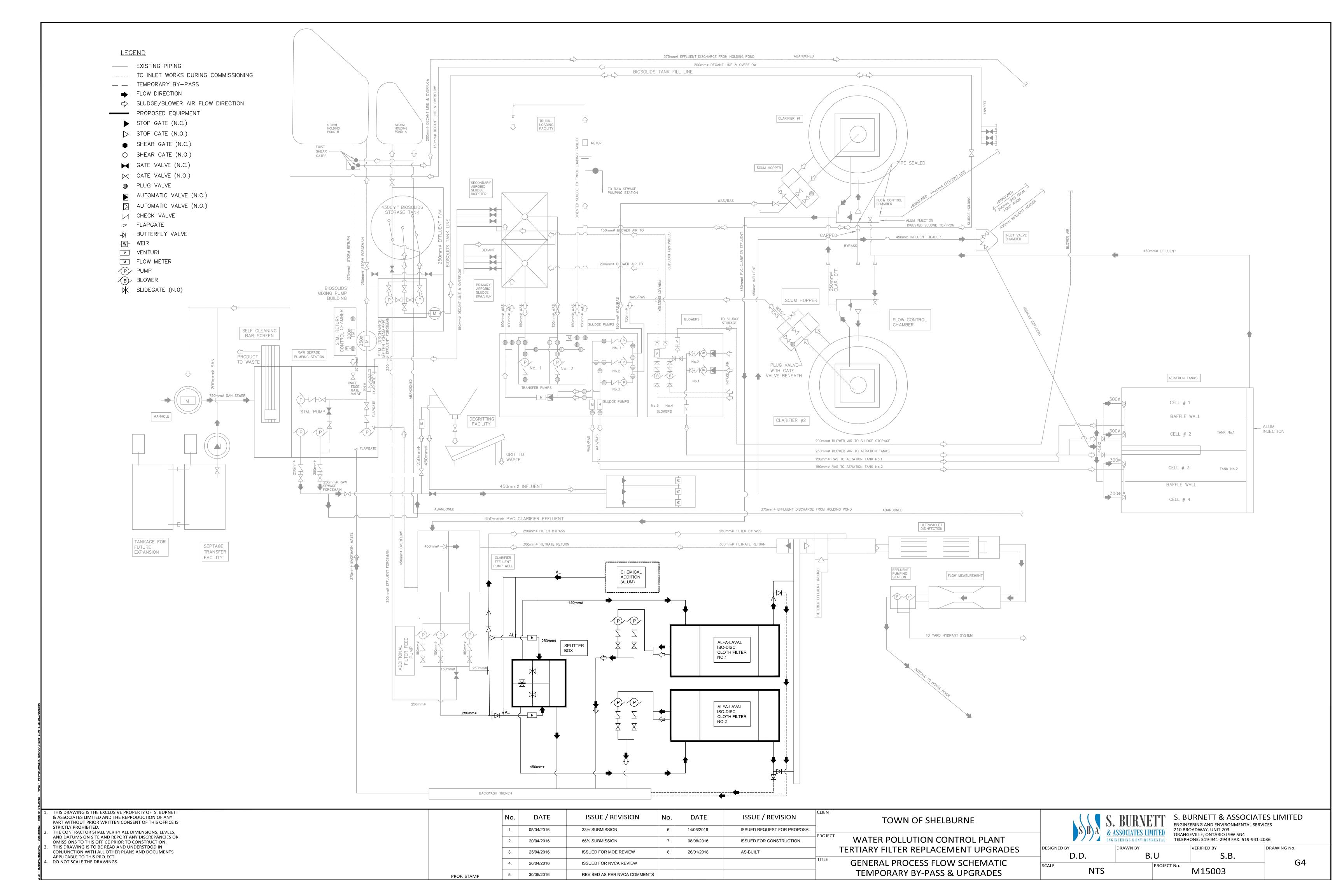
VERIFICATION REPORT - **ABB**ELECTRO-MAGNETIC FLOW MEASUREMENT

Customer Name:	OCWA-Georgian	Highlands Region	Site/Plant Ac	ldress:	300 Centennial Rd,		
Plant Name:	Shelburne WWTF)	Cito/i lant / to	ad 1000.	Shelburne,ON L0N	1S4	
<u>Devi</u>	ce Information			<u>Servi</u>	ce Information		
Make:	ABB		Date:		August 23, 2022		
Model:	MagMaster		Report No:		CO1360-2208-63		
Order Code:	NA		Job No:		CO1360-2208		
Serial No.:	3K620000015305	<u> </u>	-				
Tag:	FIT08	<u> </u>		F	low Details		
Job Location:	Storm return Flow	1	Unit:	<u></u>	l/sec		
	NA	1			0-100		
Asset ID:	INA		Flow Range:				
0-	naan Dataila		Current Outp		4-20 mA		
	nsor Details		4 mA Set Po		0		
Line size:	8"		20 mA Set F	Point	100		
Mounting:	Remote						
			Inst. Reading	<u> </u>	AS FOUND	<u>AS LEFT</u>	
			TOTALIZER	(m3)	849697	849697	
			FLOW (I/sec	:)	1.77	1.39	
Mainte	nance Checklist			Re	emarks		
Visual Inspection:	☑ OK	☐ NOT OK					
Electrical Inspection:	☑ OK	□ NOT OK					
Sensor Installation:	OK OK	☐ NOT OK					
Transmitter Installation:	_ ok ☑ ok	□ NOT OK					
Transmitter installation.	_ OK	NOT OR					
		Instrument Test Info	ormation and Resu	ılts			
				UUT			
Flow Input (%)	Calculated Flow	Calculated O/P	UUT Display	Measured	Devia		
r low input (70)	(l/sec)	(mA)	(l/sec)	Output (mA)	(I/se	c)	
0.00	0.00	0.25	0.02	4.01	0.0	2	
			25.00				
25.00	25.00	24.54		8.00	0.0		
50.00	50.00	49.85	50.01	12.01	0.0		
75.00	75.00	74.99	74.98	15.98	-0.0		
100.00	100.00	100.00	100.00	20.01	0.0	0	
	Informa	ation of Tools used for	Verification of the	Instruments			
Details		ol/Kit 1	Tool/		Tool/k	Cit 3	
Device Description:	Electrical Multime		N//		N/A		
Manufacturer:	Fluke		N//		N/A		
	179		N//		N/A		
Model No:		"				4	
	^ Refer Cal	ibration Tools Certifica	ates submittal for n	nore Information			
Verification Test Result:	☑ Pa	assed		Fail	☐ Not Ve	rified	
	1	1 111 0 10 1					
	Measurement Wo	orks within Specification	on.				
Overall Remarks:							
Service Technician :	Sanket Trada		Stamp	/Signature	(&)		
					0		
Printed Date:	August 23, 2022						
	·		End of Report		V	ersion: 19-12	

Induscontrol Inc 3170 Ridgeway Drive, Unit #11 Mississauga, ON L5L 5R4

VERIFICATION REPORT - **ABB**ELECTRO-MAGNETIC FLOW MEASUREMENT


OCWA-Georgian	Highlands Region			300 Centennial Rd				
		Site/Plant Ad	ddress:		19/			
Oncibalite WWT1				Oncibarric, Or V Lorv	104			
vice Information			Serv	ice Information				
		Date:	<u> </u>					
)	JOD NO.		CO1360-2208				
	<u>-</u>		-	low Dotoilo				
	I=	I India						
	IOW							
NA		_						
anaan Dataila								
		20 mA Set F	Point	80				
Remote								
					<u>AS LEFT</u>			
			` '		36597			
		FLOW (I/sec	:)	0.00	0.00			
			Re	emarks				
☑ OK	□ NOT OK							
	Instrument Test Info	ormation and Resu	ılts					
Calculated Flow (l/sec)	Calculated O/P (mA)	UUT Display (l/sec)	UUT Measured Output (mA)	Devia (I/se				
0.00	4.00	0.00	4.00	0.0	0			
20.00	8.00	19.99	7.99	0.0	1			
40.00			+					
60.00								
		80.01						
-			ļ.					
				1				
	ter							
					4			
* Refer Cal	ibration Tools Certifica	ates submittal for n	nore Information	1				
✓ P	assed		Fail	□ Not Ve	rified			
Measurement Wo	orks within Specificatio	n.						
Sanket Trada		Stamp	/Signature		/			
August 23, 2022								
End of Report Version: 19-12								
	Shelburne WWTF vice Information ABB MagMaster NA 3K620000015302 FIT09 Sludge transfer F NA ensor Details 8" Remote Calculated Flow (l/sec) 0.00 20.00 40.00 60.00 80.00 Information To Electrical Multime Fluke 179 * Refer Cal Sanket Trada	ABB MagMaster NA 3K620000015302 FIT09 Sludge transfer Flow NA ensor Details 8" Remote OK NOT OK Instrument Test Info Calculated Flow (I/sec) (mA) 0.00 4.00 20.00 8.00 40.00 12.00 60.00 16.00 80.00 20.00 Information of Tools used for Tool/Kit 1 Electrical Multimeter Fluke 179 * Refer Calibration Tools Certification Measurement Works within Specification Sanket Trada	Shelburne WWTP Shelburne WWTP Shelburne WWTP	Shelburne WWTP Site Information Service Information Informati	Shelburne WWTP			


2022 Annual Performance Report Shelburne Wastewater Treatment Plant Amended Environmental Compliance Approval No. 6413-ABLQQS

Appendix D

Process Flow Schematic

Process Diagram

2022 Annual Performance Report Shelburne Wastewater Treatment Plant Amended Environmental Compliance Approval No. 6413-ABLQQS

Appendix E

Notice of Modification to the Sewage Works

2022

Ministry of the Environment, Conservation and Parks

Notice of Modification to Sewage Works

RETAIN COPY OF COMPLETED FORM AS PART OF THE ECA ON-SITE PRIOR TO THE SCHEDULED IMPLEMENTATION DATE.

Part 1 — Environmental (Insert the ECA's owner, number a thereafter)	Compliance Approval (EC nd issuance date and notice number, who	A) with sich should	Limited Operational Flexibility start with "01" and consecutive numbers				
ECA Number Issuance Date (mm/dd/yy) Notice number (if applicable) 07/19/16 01							
ECA Owner Town of Shelburne		Municipality Town of S	Shelburne				

Part 2: Description of the modifications as part of the Limited Operational Flexibility (Attach a detailed description of the sewage works)

AQUABACxt is a highly effective, US EPA-registered biological larvicide. It contains a species of bacteria called bacillus thuringiensis, an approved pesticide for controlling red worms and midge flies in wastewater treatment plants.

On a weekly basis from spring to fall operator will dose the incoming raw sewage and aeration tank to eliminate midge flies at the plant during the summer months.

Description shall include:

- A detail description of the modifications and/or operations to the sewage works (e.g. sewage work component, location, size, equipment type/model, material, process name, etc.)
- 2. Confirmation that the anticipated environmental effects are negligible.
- List of updated versions of, or amendments to, all relevant technical documents that are affected by the modifications as applicable, i.e. submission of documentation is not required, but the listing of updated documents is (design brief, drawings, emergency plan, etc.)

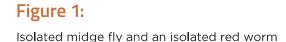
Part 3 - Declaration by Professional Engineer I hereby declare that I have verified the scope and technical aspects of this modification and confirm that the design: 1. Has been prepared or reviewed by a Professional Engineer who is licensed to practice in the Province of Ontario: 2. Has been designed in accordance with the Limited Operational Flexibility as described in the ECA; 3. Has been designed consistent with Ministry's Design Guidelines, adhering to engineering standards, industry's best management practices, and demonstrating ongoing compliance with s.53 of the Ontario Water Resources Act; and other appropriate regulations. hereby declare that to the best of my knowledge, information and belief the information contained in this form is complete and accurate Name (Print) PEO License Number Jose A. Casal, P.Eng. PMP 100133268 Signature Date (mm/dd/yy) Digitally signed by Jose Casal Date: 2022.03.29 10:46:11 -04'00' March 29, 2022 Name of Employer Ontario Clean Water Agency (OCWA)

Part 4 – Declaration by Owner I hereby declare that: 1. I am authorized by the Owner to complete this Declaration; 2. The Owner consents to the modification; and 3. This modifications to the sewage works are proposed in accordance with the Limited Operational Flexibility as described in the ECA. 4. The Owner has fulfilled all applicable requirements of the Environmental Assessment Act. I hereby declare that to the best of my knowledge, information and belief the information contained in this form is complete and accurate Name of Owner Representative (Print) Jim Moss Owner Representative's Signature Date (mm/dd/yy) O 3/22/2022

AQUABACxt & BugJuice

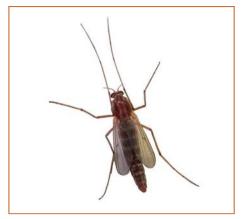
AQUABACxt

AQUABACxt is a highly effective, US EPA-registered biological larvicide. It contains a species of bacteria called bacillus thuringiensis (BT), an approved larvicide for controlling red worms and midge flies in wastewater treatment plants.


Red worms find wastewater plants to be a perfect home. They survive by eating your MLSS, then hatch into midge flies, and the cycle repeats. The active ingredient in AQUABACxt kills the red worms and breaks the cycle.

Common symptoms of red worm infestations include: disappearing MLSS (the red worms are eating it), stringy or clumpy return activated sludge, and nuisance flies that attract pests. AQUABACxt is safe to use and will only kill a very narrow set of target species; larvae of the mosquito, midge flies, and black flies. It will not cause effluent toxicity issues.

BugJuice


BugJuice degrades the cocoons red worms build around themselves, exposing more red worms to the AQUABACxt treatment. You can often find these cocoons on the walls of clarifier rings, or the sides of basins. This technique increases the effectiveness of AQUABACxt dramatically.

We recommend using BugJuice for the first 20 to 40 days of any treatment. After the initial treatment, an annual or biannual 20 day treatment is helpful for restoring the benefits.

Dose Rates

AQUABACxt & BugJuice

AQUABACxt: Wastewater Plant Dosing								
Flow Rate Gallons per day	Super Dose Twice per week for 1-2 weeks	Initial Dose Twice per week for 2 weeks	Maintenance Dose Once per week					
10,000 GPD	0.5 pt or 8 oz	4 oz	2 oz					
50,000 GPD	1 qt or 2 pt	1 pt	8 oz					
100,000 GPD	0.5 gal	1 qt	1 pt					
200,000 GPD	1 gal	2 qt	2 pt					
300,000 GPD	1.5 gal	3 qt	3 pt					
400,000 GPD	2 gal	4 qt	4 pt					
500,000 GPD	2.5 gal	5 qt	5 pt					
600,000 GPD	3 gal	6 qt	6 pt					
700,000 GPD	3.5 gal	7 qt	7 pt					
800,000 GPD	4 gal	8 qt	8 pt					
900,000 GPD	4.5 gal	9 qt	9 pt					
1,000,000 GPD	5 gal	10 qt	10 pt					

AQUABACxt: Wastewater Lagoon Dosing								
Lagoon Size	Initial Dose Once per week for 4 weeks	Maintenance Dose Once per week						
1 Acres	2.5 gal	1 gal						
4 Acres	10 gal	4 gal						
8 Acres	20 gal	8 gal						

BugJuice Dose Rate	
Flow Rate Gallons per day	Dose: Add Daily at the head of treatment plant
100,000 GPD	1 pt
200,000 GPD	2 pt
300,000 GPD	3 pt
400,000 GPD	4 pt
500,000 GPD	5 pt
600,000 GPD	6 pt
700,000 GPD	7 pt
800,000 GPD	8 pt
900,000 GPD	9 pt
1,000,000 GPD	10 pt

AQUABACxt:

- Add directly to areas with red worms, often secondary clarifiers and tertiary processes
- Can be metered instead of weekly slug dose, if desired
- Continue to use throughout your climate's active midge fly season

BugJuice:

- Add daily at headworks of plant
- Use for at least the first 20-40 days of any AQUABACxt treatment

Available Sizes:

- 5 gal case
- 135 gal pallet
- 250 gal tote (AQUABACxt)
- 275 gal tote (BugJuice)

From: Weber, Martha (MECP)

To: Melissa Cortes

Cc: Don Irvine; Monika Kowalska; Jenna Porter

Subject: RE: Shelburne WWTP - Midge Fly Control

Date: March-21-22 7:57:13 AM

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good morning Melissa,

I double-checked with Approvals, and they agree this item would fall within the LOF provisions as proposed.

Thanks for reaching out!

Martha Weber

Water Inspector/Provincial Officer Ministry of the Environment, Conservation and Parks Guelph District Office Cell (519) 830-5977

NOTE: This message is confidential and may be privileged and exempt from disclosure under applicable law. If you are not the intended recipient or an agent of that individual or organization, any use, copying, or distribution of this message by you is strictly prohibited. If you received this communication in error, please contact me by return e-mail and delete this message.

- We want to hear from you. How was my service? You can provide feedback at 1-888-745-8888 or ontario.ca/inspectionfeedback
- Nous attendons vos commentaires. Qu'avez-vous pensé de mon service? Vous pouvez nous faire part de vos commentaires au 1-888-745-8888 ou à ontario.ca/retroactioninspection

From: Melissa Cortes < MCortes@ocwa.com> Sent: Wednesday, March 16, 2022 12:01 PM

To: Weber, Martha (MECP) < Martha. Weber@ontario.ca>

Cc: Donald Irvine dirvine@ocwa.com; Monika Kowalska MKowalska@ocwa.com; Jenna Porter

<JPorter2@ocwa.com>

Subject: Shelburne WWTP - Midge Fly Control

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

Hi Martha,

I wanted to reach out to you to start a discussion on the use of a products called AQUABACxt and Bug Juice at the Shelbune WWTP to control midge flies. Our operator reached out and provided documentation/research on this product and how effective it is in controlling midge flies and wanted to try it at the Shelburne WWTP. Attached is some information on the product as well as dosing calculations that our operator has completed with a schedule of dosing.

If you could provide your feedback and directions we can take to start using these products I would greatly appreciate it. I believe it would fall under LOF and a notice of modification form will be

completed before using this product.

Thanks Melissa

Melissa Cortes

Process & Compliance Technician
Highlands Hub, Georgian Highlands Region
300 Centennial Road
Shelburne ON, L9V 2Z4
519-938-6909

From: Monika Kowalska < MKowalska@ocwa.com>

Sent: March-11-22 9:48 AM

To: Don Irvine < <u>DIrvine@ocwa.com</u>>

Cc: Jose Casal < <u>JCasal@ocwa.com</u>>; Jenna Porter < <u>JPorter2@ocwa.com</u>>; Melissa Cortes

<<u>MCortes@ocwa.com</u>>

Subject: RE: Shelburne WWTP

Hi

I initially found out about this product through the email correspondence attached by Don. Another OCWA facility used this product last year and had great success.

Looking at the website, https://teamaquafix.com/products/midge-flies/aquabac-xt-midge-flies/ It is a product specifically designed for use at WWTP to eliminate red worms which develop into midge flies. These flies in turn attract spiders into the plant.

"It contains a species of bacteria called *bacillus thuringiensis*, an approved larvicide for controlling red worms and midge flies in wastewater treatment plants and waterways. Highly effective against red worms but safe for fish, birds, mammals, and other lifeforms. AQUABACxt is safe to use and will only kill a very narrow set of target species; larvae of the mosquito, midge flies, and black flies. It will not cause effluent toxicity issues."

I am also a member of a wastewater operator group, and within this group, there have been many post about how other operators around the world manage the flies at their facilities, and the operators that have used this product highly recommend it.

Only other way to reduce/eliminate these flies at the source is through chlorination (which can negatively impact the microorganisms in the RAS). All other methods (bug zappers, etc.) are only treating the symptoms and are not effective.

Attached is the product sheet which can be found on the AQUAFIX website, and states the recommended doses.

Attached is the calculations I performed to determine how much product is required this year based off of the plant's flow per day.

There are 2 products that will be used.

Bug Juice draws out the red worms that are hiding in rags/grit and degrades their protective cocoons. The AQUABACxt is fed upon by these red worms which kills them, thereby eliminating the midge flies.

Bug Juice also carries the added benefit of improving digester settling and denser sludge (similar to XLR8 product used at the plant a couple of years ago). https://teamaquafix.com/products/aerobic-digester-sludge-storage-tank/bug-juice-sludge-reduction/

Attached is the SDS for both Bug Juice and AQUABACxt.

Attached is email correspondence with Landon from AQUAFIX, with some answers to questions I had earlier this year.

Let me know if there's any other info required.

Thanks,

Monika Kowalska, C.Tech.

Water & Wastewater Operator | Ontario Clean Water Agency Highlands Hub | Georgian Highlands Region 300 Centennial Rd, Shelburne, Ontario L9V 2Z4 Cell 519-940-6057 | mkowalska@ocwa.com

2022 Annual Performance Report Shelburne Wastewater Treatment Plant Amended Environmental Compliance Approval No. 6413-ABLQQS

Appendix F

ECA Limit Exceedance Email/Written Notifications

2022

Melissa Cortes

From: Melissa Cortes

Sent: June-17-22 3:51 PM

To: martha.weber@ontario.ca

Cc: Stephen Burnett - S. Burnett & Associates Limited

(stephen.burnett@sbaengineering.com); jmoss@shelburne.ca; Don Irvine; Camille

Leung; Mike Mortimer; Monika Kowalska; Jenna Porter

Subject: Shelburne Wastewater Treatment Plant (WWTP) ECA Compliance Limit Exceedance

(CBOD5) - May 2022

Hello Martha,

This is a notification that the Shelburne Wastewater Treatment Plant (WWTP) has met all <u>but one</u> of its ECA compliance limits (CBOD5) for the month of May 2022.

Facility: Shelburne WWTP ECA # 6413-ABLQQS ECA Issued: July 19, 2016

May 2022

Shelburne WWTP		ərd	10 th	1 7 th	24 th	31 st	MONTHLY	Panartabla		
PARAMETER	LIMIT	OBJECTIVE	5 ′*	0	10	17	24	31	AVERAGE	Reportable
CBOD5	5.0mg/L	4.0mg/L	4	13	4	2	4	5.40	Monthly	

Results Summary

CBOD₅ – the monthly average concentration of 5.40 mg/L was above the ECA Compliance Limit.

Reporting Actions

Verbally notified Martha Weber, Provincial Office/Water Inspector with the MECP Guelph District Office of the exceedance on Friday June 17th, 2022 via phone call, left voicemail with details.

Process Observations

- North Clarifier out of service since April 28 while repairs were being scheduled and plant may have taken a shock load of BOD from possible industrial section of town (North Clarifier returned to service June 6)
- Sludge blanket in South Clarifier was higher due to the extra loading with the North Clarifier being out of service

Corrective Actions taken

 Operator adjusted raw sewage and RAS flows daily until blanket in South Clarifier returned to normal operating levels

If there are any questions or comments concerning this matter, please let us know.

Thank you,

Process & Compliance Technician Highlands Hub, Georgian Highlands Region 300 Centennial Road Shelburne ON, L9V 2Z4 519-938-6909

Melissa Cortes

From: Melissa Cortes

Sent: January-13-23 12:43 PM **To:** martha.weber@ontario.ca

Cc: Stephen Burnett - S. Burnett & Associates Limited

(stephen.burnett@sbaengineering.com); jmoss@shelburne.ca; Don Irvine; Camille

Leung; Caralynn McRae; Monika Kowalska; Suhail Auzam

Subject: Shelburne Wastewater Treatment Plant (WWTP) ECA Compliance Limit Exceedance

Total Suspended Solids - December 2022

Hello Martha,

This is a notification that the Shelburne Wastewater Treatment Plant (WWTP) has met all <u>but one</u> of its ECA compliance limits (**Total Suspended Solids**) for the month of **December 2022**.

Facility: Shelburne WWTP ECA # 6413-ABLQQS ECA Issued: July 19, 2016

December 2022

Shelburne WWTP		eth	13 th	20 th	28 th	MONTHLY	Reportable	
PARAMETER	LIMIT	OBJECTIVE	Θ	15	20*	20	AVERAGE	Reportable
TSS	5.0mg/L	4.0mg/L	2	7	5	8	5.50	Monthly

Results Summary

• TSS (Total Suspended Solids) – the monthly average concentration of 5.50 mg/L was <u>above</u> the ECA Compliance Limit.

Reporting Actions

Verbally notified Martha Weber, Provincial Office/Water Inspector with the MECP Guelph District Office of the exceedance on Friday January 13, 2023 at 12:39 via phone call, left voicemail with exceedance information.

Process Observations

13th - Possible high concentration of solids entering plant after hours

28th - Operations observed on December 20th, 2022 incoming raw sewage was black (unsure of source), H2S gas in headworks was high.

- December 21st, 2022 final effluent was cloudy and ammonia was high (0.94 mg/L).
- December 23rd, 2022 grit vortex was clogged and needed to be unclogged.
- December 23rd-24th, 2022 power failure due to snow storm.
- December 24th, 2022 aeration blower 1 failure due to snow storm, filters were clogged.
- December 25th-28th wasting didn't occur due to return activated sludge pump 2 failure and pump 3 out of service
- December 26th, 2022 return activated sludge pump 2 failure due to electrical cable issue

Corrective Actions taken

13th - Cleaned UV channel, auto-sampler suction/discharge lines, increased aeration blower and return activated sludge into aeration

28th - December 21st, 2022 increased aeration blower 1, decreased raw sewage into plant, increased return activated sludge into aeration.

- December 23rd, 2022 unclogged grit vortex
- December 24th, 2022 changed filters on aeration blower 1
- December 26th, 2022 return activated sludge pump 2 running, electrical issue temporarily solved
- December 30th, 2022 return activated sludge pump 3 back in service, wasting issue resolved

If there are any questions or comments concerning this matter, please let us know.

Thank you,

Melissa Cortes

Process & Compliance Technician Highlands Hub, Georgian Highlands Region 300 Centennial Road Shelburne ON, L9V 2Z4 519-938-6909

