

136 Main Street East Shelburne, Ontario Canada 19v 3K5

TEL: 1 866 214 6987
TEL: 519 925 1938
FAX: 519 925 0322
WWW.OCWA.COM

March 30, 2017

Mr. John Telfer Town Clerk/CAO Town of Shelburne 203 Main Street East Shelburne, ON LON 1S0

Re: 2016 Performance Report for Shelburne Waste Water Treatment Facility

Attached is the 2016 Performance Report for the Shelburne Waste Water Treatment Facility located at Centennial Street in the Town of Shelburne. This report has been completed in accordance with the Amended Certificate of Approval # 6413-ABLQQS dated July 19, 2016 and issued to the Town of Shelburne.

This report was prepared by the Ontario Clean Water Agency on behalf of the Town of Shelburne based on the information we have in our records. The report covers the period from January 1, 2016 to December 31, 2016.

If you have questions regarding the attached report please do not hesitate to contact me at (519) 925-1938.

Kind Regards,

Scott Craggs

Senior Operations Manager Ontario Clean Water Agency

Highlands Hub

SC/Ib

Annual Report

for the

Shelburne Water Pollution Control Plant

Certificate of Approval No. 6413-ABLQQS

for the year

2016

prepared for the Town of Shelburne by the Ontario Clean Water Agency

Prepared by: Lisa Benoit Process & Compliance Technician Ontario Clean Water Agency Highlands Hub

Operated by the Ontario Clean Water Agency (OCWA) under contract to the Town of Shelburne for the year 2016

Section 1 - Introduction:

The Ontario Clean Water Agency is pleased to provide the Ministry of the Environment and Climate Change (MOECC) with the 2016 Annual Performance Report for the Shelburne Wastewater Treatment Plant.

This report is designed to inform the MOECC of the quality of effluent being discharged from this facility. The entire treatment process at the Shelburne Wastewater Treatment Plant can best be described as a "transformation".

A transformation from a harmful wastewater into two useful end products:

- a) A disinfected treated effluent
- b) An agricultural liquid fertilizer

Inquiries regarding this report can be directed to Scott Craggs, Senior Operations Manager at the Ontario Clean Water Agency office located at 136 Main St. East, in Shelburne, Ontario. (Tel) (519) 925-1938, Fax (519) 925-0322, email: scraggs@ocwa.com.

Section 2 - Project Description:

The Town of Shelburne is a community of approximately 8,200 people located approximately 100 kilometers northwest of Toronto. The community first obtained a waste disposal system in 1968 with the construction of a 5.5 ha lagoon and associated gravity collection and pumping system. The Town grew consistently over the years and eventually overloaded the lagoon system. In July 1981 construction was completed on a wastewater treatment system located at the present location. This expansion consisted of a new trunk sewer, pumping facilities, secondary and tertiary treatment and modifications to the existing lagoons which now provide storm and effluent holding during excess storm flows and plant upsets and maintenance.

The facility consisted of a wet well, a manual screen, grit channels, an oxidation ditch, one secondary clarifier, four effluent sand filters and a chlorine contact chamber. The oxidation ditch used two brush rotors. The facility operated as an extended aeration plant in this configuration from 1981 until December 1999.

A major expansion (Phase 1) took place at the Shelburne WWTP in 1999, changing the configuration of the plant and the method of treating wastewater. The plant went under construction starting in April 1999 with the start-up of the new process in December of 1999. The Shelburne WWTP is still an extended aeration plant. As an extended aeration plant it is designed to remove suspended solids, CBOD₅ and phosphorus from the wastewater. Major improvements were two aeration tanks constructed with fine bubble diffusers. The sludge treatment system consists of a two stage aerobic sludge digestion system with a total storage volume of 580m³, equipped with coarse bubble aeration system and supernatant decanting. The former oxidation ditch was converted to a sludge storage facility with approximately six months storage.

Sludge loading facilities provide for transfer of digested aerobic sludge to trucks. Digested sludge is land-applied as farm fertilizer.

Two ultra-violet radiation banks replaced the sodium hypochlorite disinfection system.

In March 2006 the Ministry of the Environment issued an amended Certificate of Approval # 9046-6GAJUM for the Phase 2 extension and upgrading including:

- Construction of a hauled sewage receiving station;
- Replacement of the raw sewage pumping station two submersible pumps;
- · Replacement of the inlet works;
- Construction of a secondary clarifier;
- · Replacement of the clarifier effluent pump system; and
- Reconfiguration of the stormwater and effluent holding ponds.

New media was introduced into the filters, and OCWA and the Town of Shelburne are debating if a dual media filter is necessary as per the amended Certificate of Approval No. 9972-7FYJUB. Currently the filters are operating on single media, and if the Town of Shelburne continues to use a single media filter an administrative amendment to the Certificate of Approval will have to be submitted to reflect the current plant process.

In 2016 the Ministry of the Environment and Climate Change issued an amended Environmental Compliance Approval #6413-ABLQQS for upgrading of the filtration and standby power which included;

- Two cloth-filter treatment units with a design capacity of 4,400 m³ each
- One 650 kW standby power diesel generator and 9000L diesel tank with double-walled containment

This facility receives residential, commercial, institutional and industrial wastewater and provides a level of treatment to meet the amended "Environmental Compliance Approval - # 6413-ABLQQS" for discharging into the Beasley Drain a minor tributary of the Boyne River. The Boyne Creek empties into the Nottawasaga River, ultimately meeting Georgian Bay at Wasaga Beach.

A "Process Flow Schematic" is included in Appendix D of this report.

Section 3 - Plant Facts:

Facilities ➤ Extended Aeration Sewage Treatment Plant

Design Capacity >>3,420 m³/dayAverage Daily Flow 2016 >>2,252 m³/day

Receiving Water ➤ Besley Drain to Boyne Creek to Nottawasaga River

Service Population ➤ approx 8,200 (2016)

Environmental Compliance Approval >> 6413-ABLQQS

Plant Classification ➤ WWT-III

Organization Number >> 5773

Effluent Objectives

Tab	ole 2 – Effluent Objectives
Effluent Parameter	Concentration Objective
	(milligrams per litre unless otherwise indicated)
Column 1	Column 2
CBOD ₅	4.0
Total Suspended Solids	4.0
Total Phosphorous	0.12
Total Ammonia Nitrogen	
Oct 1 – May 31	2.0
Jun 1 - Sept 30	0.5
E-coli	100 organisms /100 mL (monthly Geometric
nH of the effluent maintain	Mean Density) ned between 6.5 – 8.5, inclusive, at all times.

Effluent Requirements:

	Table 1 – Ef	fluent Limits			
Effluent Parameter	Maximum Concentration (milligrams per litre unless otherwise indicated)	Monthly Average Concentration (milligrams per litre unless otherwise indicated)	Annual or Seasonal Average Loading (kilograms per day unless otherwise indicated)		
Column 1	Column 2	Column 3	Column 4		
CBOD5		5.0	17.1		
Total Suspended Solids	-	5.0	17.1		
Total Phosphorous	•	0.25	0.86		
Total Ammonia Nitrogen Oct 1 – May 31 Jun 1 – Sept 30	-	2.4 0.8	8.2 2.7		
E-coli	-	200 organisms /100 mL (monthly Geometric Mean Density)	-		
pH of the effluent maintain	ed between 6.0 to	9.5, inclusive, at all time			

Sampling Requirements >>

Final effluent: a 24 hour composite sample to be collected weekly and tested for BOD₅, CBOD₅, Total Suspended Solids, Total Ammonia Nitrogen, Total Kjeldahl Nitrogen, Nitrite, Nitrate and Total Phosphorus, pH, Alkalinity and Temperature; a weekly grab sample for E.coli.

Raw sewage: a grab sample to be collected monthly and tested for BOD₅, CBOD₅, Total Suspended Solids, Total Kjeldahl Nitrogen, Total Phosphorous, pH and Alkalinity.

Hauled sewage: a grab sample is collected monthly and tested for BOD₅, CBOD₅, Total Suspended Solids, Total Kjeldahl Nitrogen, and Total Phosphorous.

Aerobic sludge: a grab sample is collected monthly during the non-spreading and spreading season and tested for total solids, nitrite, nitrate, total phosphorous, total ammonia nitrogen, total kjeldahl nitrogen, pH and metals.

Section 4 - Sampling Procedures:

Raw sewage is sampled monthly and tested for BOD₅, CBOD₅, Suspended Solids, Total Kjeldahl Nitrogen, pH, Alkalinity and Total Phosphorus. Samples are collected using an automatic composite sampler (over a twenty-four hour period).

Final effluent is sampled weekly and tested for CBOD₅, Total Suspended Solids, Total Phosphorus, pH, Alkalinity, Total Kjeldahl Nitrogen, Total Ammonia Nitrogen, Nitrite and Nitrate. These are collected using an automatic composite sampler (over a twenty-four hour period). A weekly grab sample is collected and tested for E.coli. Grab samples of final effluent is also collected and tested in the plant by the operator for pH and temperature.

The concentration of un-ionized ammonia is calculated using the grab pH and temperature results and the total ammonia concentration result from SGS Lakefield Research Limited.

In-house tests are conducted by licensed operators for monitoring purposes using Standard Methods. The data generated from these tests is used to determine the treatment efficiency while maintaining process control. All in-house monitoring equipment is calibrated based on the manufacturer's recommendations.

Aerobic sludge is collected and tested as per the sampling requirements.

Section 5 - Summary of Report:

In 2016, the Shelburne WWTP provided effective wastewater treatment, producing effluent with removal rates for CBOD₅, TSS, TKN and Total Phosphorus all 97.3 % or better.

The bacteriological quality of the effluent complied with the certificate of approval monthly geometric mean density of <200 organisms per 100 ml sample for every month during 2016.

The aerobic sludge produced at the facility continued to meet all the Guidelines established for agricultural utilization. Eden Environmental Services Limited of Kenilworth are contracted to haul and spread sludge from the Shelburne WPCP.

Section 6 - Compliance With Provincial Regulations:

OCWA operates this sewage system in accordance with provincial regulations. Here is how we do it:

 Use of Accredited Labs (SGS Canada Inc.): Analytical tests to monitor the effluent quality are conducted by a laboratory audited by the Canadian Association for Environmental Analytical Laboratories (CAEAL) and accredited by the Standards Council of Canada (SCC). Accreditation ensures that the laboratory has acceptable laboratory protocols and test methods in place. It also requires the laboratory to provide evidence and assurances of the proficiency of the analysts performing the test methods. During 2016, all chemical sample analyses were conducted by SGS Lakefield Research Limited.

- Operation by Licensed Operators: This sewage system is operated and maintained by the OCWA's licensed staff. The mandatory licensing program for operators of sewage treatment facilities in Ontario is regulated under the Ontario Water Resources Act (OWRA) Ontario
- Regulation 129/04. Licensing means that an individual meets the education and experience requirements and has successfully passed the certification exam.

The following are certified operators who operated this facility during 2016 with current certified classification, certificate numbers and certificate expiry dates (TABLE 1):

TABLE 1

Operator	Level	Certificate #	Expiry Date
Alex Solonomov	WWT 2	#49144	Jul 31, 2018
	WWC 2	#16652	Jan 31, 2018
Bill Smith	WWT 2	#65685	Aug 31, 2017
	WWC 1	Deemed	Aug 31, 2017
Curtis Parker	WWT 4	#79166	Mar 31, 2019
	WWC 3	#79167	Jul 31, 2018
Emanuel Castro	WWT 1	#95067	Oct 31, 2019
	WWC 1	Deemed	Oct 31, 2019

 Sampling and Analytical Requirements: OCWA follows a sampling and analysis schedule required by the Certificate of Approval.

Section 7 - System Information:

	Town of Shelburne Wast	e	
Facility Name:	Water Treatment Plant	Client Services: Phone Number	Dave O'Connell (289) 523-3653
Receiving Water Disinfection Method	Besley Drain to Boyne River Ultra Violet	E-mail Address	doconnell@ocwa.com
Municipal Location	Town of Shelburne	Senior Operations Manager Phone Number	Scott Craggs (519) 925-1938
Service Population	Approx 8,200 (2016)	E-mail Address	scraggs@ocwa.com

Section 8 - Flows:

The total flow treated in 2016 was 823,570 m^3 . The annual average daily flow of 2,252 m^3 /day was 65.8% of the design capacity. The maximum peak flow of 4,285 m^3 /day represents 48.0% of the design peak flow of 8,921 m^3 /day. The monthly average daily design flow was not exceeded during 2016.

Section 9 - Raw Sewage Quality:

The annual average raw sewage $CBOD_5$ concentration to the plant was 180.667 mg/L. This corresponds to an average $CBOD_5$ loading of 406.86 kg/day. The annual average raw sewage suspended solids (TSS) concentration to the plant was 139.00 kg/day. This corresponds to an average TSS loading of 313.03 kg/day. The annual average raw sewage nitrogen concentration (as represented by TKN) to the plant was 27.308 mg/L. This corresponds to an average TKN loading of 61.50 kg/day. The annual average raw sewage Total Phosphorus concentration to the plant was 3.497 mg/L. This corresponds to an average Total Phosphorus loading of 7.88 kg/day.

Section 10 - Plant Performance & Effluent Quality:

There were no operating problems encountered or corrective actions required at the Shelburne Water Pollution Control Plant during 2016 that affected the quality of the effluent leaving the plant. All repairs/maintenance can be found in Section 14.

Detailed analytical results from SGS Lakefield Research Limited are available at the office on request. A summary of flows and plant performance is provided in this report.

The Shelburne WWTP provided effective wastewater treatment with removal rates for CBOD₅, TSS, TKN and Total Phosphorus of 97.3% or better for 2016.

Effluent Limits

The annual average effluent CBOD $_5$ concentration was 2.22 mg/l with a removal efficiency of 99.4%. The annual average effluent TSS concentration was 2.26 mg/l with a removal efficiency of 99.4%. The annual average effluent Total Kjeldahl Nitrogen (TKN) concentration was 0.75 mg/l with a removal efficiency of 97.3%. The annual average effluent Total Phosphorus concentration was 0.06 mg/l with a removal efficiency of 99.0%. The annual average effluent concentration for Total Ammonia-Nitrogen was 0.21 mg/l for the season (Oct 1 to May 31, 2013). The annual average effluent concentration for Total Ammonia-Nitrogen was 0.27 mg/l for the season (June 1 to Sept 30, 2013).

This facility was in compliance with all the effluent concentration and loading limits for the year 2016. The average waste loadings for the final effluent can be found in Appendix A.

The 2016 bacteriological quality of the effluent complied with the certificate of approval monthly geometric mean density of <200 organisms per 100 ml sample for every month during 2016. The monthly geometric mean densities of organisms were between 1.68 to 2.30 per 100 ml.

Effluent Objectives

The effluent from the facility met the effluent concentration objectives for Total Phosphorus, $CBOD_5$, Total Suspended Solids and E.coli. The effluent concentration objectives for Total Ammonia Nitrogen in June and pH in September were not met.

Section 11 - Sludge Management:

Digested sludge produced at the Shelburne WWTP is land-applied in accordance with the Nutrient Management Act 2002 and Ontario Regulation 267/03.

Grab samples of digested (aerobic) sludge are collected and tested as per these requirements. In 2016 sludge sample analysis were carried out by SGS Lakefield Research Limited. A summary of sludge sample results is provided in Appendix B of this report.

Eden Environmental Services Ltd. was contracted to haul and spread sludge from the Shelburne plant in 2016. (Certificate of Approval - Waste Management System #9566-6HYKC3)

The following certified sites were utilized in 2016:

- > NASM Plan #21028 Oscar Martin
- > NASM Plan #20622 David Barker

A total volume of 5,616.0 m³ of sludge was applied to the above fields from the Shelburne WWTP in 2016.

Based on the design flow and average wastewater quality, the anticipated volume of sludge generated for 2016 would be approximately 5,700.0 m³.

Section 12 – A summary of any complaints received during the reporting period and any steps taken to address the complaints:

A standard operating procedure (SOP) has been in place for a number of years to deal with complaints received from the community. All complaints are to be addressed and logged in detail in the facility logbook and a generic "Complaint Form". The information from the form would be entered on OCWA's electronic database system "OPEX". This system contains all the required information and history of all complaints.

No complaints were received during this reporting period with regard to the Shelburne Water Pollution Control Plant.

Section 13 - Bypassing and Abnormal Conditions:

There were no bypasses at the Shelburne Water Pollution Control Plant during the 2015 reporting period.

Section 14 - Maintenance and Calibration Activities:

Plant maintenance, including non-scheduled maintenance is monitored using Maximo Workplace Management System. Detailed maintenance reports are available. All routine and preventative maintenance was conducted as scheduled in 2016.

A number of repairs or improvements to equipment on the works were made or identified in 2016 as follows:

Plant:

- Replaced the drive gear on the south clarifier.
- Cleaned out sand from UV channel.
- Replaced the spur gear on the south clarifier.
- Cleaned out the scum pits.
- Welded a patch on the filter pipe.
- Repaired the plating on the bar screen.
- Replaced the contactor on filter return pump #2.
- Completed the annual diesel generator inspection.
- Installed two (2) cloth-filter treatment units each having a Peak Flow Rate of 558 m³/h via one (1) 450 mm diameter inlet piping to a splitter box, 250 mm process pipings to the units and overflow over a weir.
- Installed one (1) 650 kW standby power diesel generator and 9000L diesel tank with double-walled containment.

Hollen Controls Limited was contracted to calibrate all flow measuring equipment on October 6, 2016. Copies of the calibration reports can be found in Appendix C of this report.

Section 15 – Inspection of the Facility by the Ministry of the Environment and Climate Change:

There was no MOECC inspection of the Shelburne Water Pollution Control Plant in 2016.

Section 16 - Notice of Modifications:

There were no notices of modifications sent to the Water Supervisor during this reporting period with regard to the Shelburne Water Pollution Control Plant.

Section 17 - Operational Objectives:

The Town of Shelburne Wastewater Treatment Plant continues to provide excellent wastewater treatment. OCWA and its operators will continue to strive through expertise and knowledge to meet all objectives and to continually improve and optimize the efficiency of the facility.

Section 18 - Appendix:

- 2015 Annual Performance Summary Appendix A
 - Annual Summary for 2016
 - Flows and Effluent Quality 2016
- Sludge Quality Data & Haulage 2016 Appendix B
- Calibration Reports 2016 Appendix C
- Process Flow Schematic 2016 Appendix D

Appendix A

Annual Performance Summary

2016

	2016
3URNE WWTP	SUMMARY FOR
ij	NUAL

C. of A. LIMIT	823.570 Totai 2.252 Average 4.285 Maximum		_	_		_		0.000 Total
DEC	2.126 2.587			0.000	0.0	0.00	0.0	0000
NOV	59.526 1.984 2.325			0000	0.0	0.000	0.0	0000
OCT	52,553 1,695 2,131			0.00	0.0	0000	0.0	0.0
S)	52.620 1.736 2.005		0000	0.000	0.0	0.000	0.0	0.0
AUG	55.402 1.787 2.280		0000	30.0	0.0	0.000	0.0	0.0
Jū.	55.627 1.794 2.233		0000	30.0	0.0	0.000	200	000
NOC	2.281	!	0000	0000	0.00	0.000	0000	0.0
MAY	77.860 2.512 3.059		0000		0.00	0.000	0.00	0.0
APR	97.574 3.252 4.285		1000	200	200	00.00	0000	0.0
MAR	90.655 2.924 3.619		0000	0	200	0000	0000	0.0
8	74.833 2.580 3.293		10000	Ċ	000	200	000.0	0.0
JAN	79.619 2.568 3.399		0 00 0	C	0000	300	0.000	0.0
	1000m3 1000m3/d 1000m3/d		1000m3	LIS.	1000m3		1000m3	hrs.
FLOWS	Total Avg day flow Max day flow	BYPASS	Primary Volume	Tine	Secondary Volume	Тітв	Tertlary Volume	Time

STREAM LOADING COMPLIANCE is now an Annual Average Loading Limit "Average Waste Loadings"

HAULED SEWAGE

												-	
Character Conservation Control											DENIE STREET		
named Sewage Volume	E	4.5		27.3	10.9		4		24.4	-	_		
2000	•		Ì				2:0		6.1.4	0.4	_	74.1	
BODS	mg/l	1430.0	_	1576.2	911.0		5250.0		4745.0	2430		l	
350ac							010010		20.01	200			
	NG III	2040.0		1285.0	563.0		4360.0		3437 E	4040			
Tec	-	4 44664							01 AT 1.00	240			
200	ingin.	12300.D		2978.0	113.5		1360.0		17575 n i	48400 O	ס טפט ס		
TKN		0000							0.0	1010			
L. C.	S E	264.0		404.8	83.2		514.0		942 5	670			
	-	000							200	OLS.			
1 000	ngm ngm	0.18	_	25.8	4		85.2		477.0	4.00			

^{*} Note: the Total Ammonia Nitrogen(TAN) - Average Waste Loadings are "Seasonal Loadings"

FOR 2016 SHELBURNE WWTP
ANNUAL SUMMARY

		L	1
		Į	١
		•	
		4	
		i	
	Į	Ċ	
	1		
	í	ί	
	4	b	
	4		
	1	ļ	
	3		
	í	ĺ	Ė
			ľ
	î	ŕ	4

		lotal	Average			Tate	1019	Average	
ANNUAL	74047	/104/	617 /	1		5040 A	2010.0	2.5	
DEC	6214.0	27.00	62.4					_	
NOV	R141.8	2	67.5			3960 0	200		
OCT	6100 2	7	77.8					3.1	
SEP	6314.0	200	78.6					2.6	
AUG	63140		74.4	-	1			2.3	
JUL	6371.4		76.3	-		_		2.1	
NOC	6027.0		64.0		-	_	۲	7.1	
MAY	6342.7		53.3	_			c	4.3	
APR	9.6969	0 0,	40.2	_	0 0007	0.0001	0 0	6.3	
MAR	6141.8	400	44.0	_	-		3.6	200	
FEB	5740.0	0 04	30.3		-		20	2.0	
JAN	6141.8	610	7.10		_	1	30		
'	kg	- United	, h		EE		200		
CHEMICALS & SLUDGE HAULAGE		Alum Dosage			Sindoe Haujaoe		lotal solids		

COMPLIANCE LOADINGS FOR 2016 FINAL EFFLUENT

	;	JAN	FEB	MAR	APR	MAY	NOC	שר	AUG	SEP	TOO	AUN	טווע
CECCOS	kg/d	5.137	5.161	5.849	7.318	5.526	4.093	4.486	3.574	5 282	3 391	4 255	2 2
	kg/d	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	12.1	17.1	17.1	17.1
Suspended Solids	kg/d	5.137	5.161	5.849	7.318	7.535	4.093	4.935	4.289	4.823	3.391	3 968	4 252
	Kg/d	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	12.1	17.1	12.1
TOTAL FILOSOPHOLOS	× × č	0.108	0.136	0.145	0.267	0.170	0.110	0.084	0.142	1960.0	0.082	0.109	0 004
	kg/d	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	O RG
Jotal Ammonia Nitrogen	kg/d	0.257	0.258	0.292	0.325	1.859	1.586	0.179	0.179	0.175	0.170	0 108	0.242
	p/6x	60	200	8.2	9.2	2 8	2 2	17	100			3	2

2016 BACTERIOLOGICAL DATA

	Sample #1	Sample #2	Sample #3	Sample #4	Sample #5	Monthly Gan Mann	A second of the	Annual Geometric Mean C. of A. Requirement
	# per 100 mL	4	# per 100 mL	# per 100 mL # per 100 mL				
JAN	2	2	2	2			2.00	1.92
FEB	2	2	2	2	2		2.00	
MAR	2	2	2	2			2.00	
APR	7	2	2	2			2.00	
MAY	2	2	2	0			1.68	
NOC	-	-	0	2	2		2.00	
JUL	2	100	100	0			1.68	
AUG	6	-	,	**	4		2.30	

	_	_	_	_,	L.	_	L	_	L	_ 1			Ш.	-7	
	6	7	c	7	r	9	•	¥					2 00	6,00	
	c	7	6	3	٠	7	c	7	•	\$			2 30	2019	
	-	4	2	1	0	7	-	5					1 6.9	l	
	2		2	1	-	4	6	4	2	1			2.00		
	~		7		0		c	,	_				1.68		
	7		2		2		2						2.00		
	2		7	,	7	ľ	2					-	2.00		
	7		7	-	7	ľ	7		7				2.00		
•	7	•	7	c	7	-	7	-				200	2.00	4 0.3	25.
	_	_	_	_	_	L	_	L	_	ļ	ı	Ц,	J		

1.68 1.74 2.00

DEC

NO NO

OCT

SEP

Appendix B

Sludge Quality Data & Haulage

2016

SHELBURNE WWTP ANNUAL SUMMARY FOR 2016

STATE OF ATAC STATE															
		IAM	222	MAD	408	7444	9			į	!				
Nutrients					ALL	MAT	200	JOE	AUG	SEP	130	NON NON	DEC	ANNUAL	
Ammonia	Vбш	330.0	322.0	.0 155.5	5 284.5		430.0	0.0101 0.0	632.0	0.679	721.0			488.9	4
Phosphorus	₩g/l	600.0				1.0 470.0	410.0						T	545	
Nitrate	/bm	0.30		0.30		0.30 0.40								0.31	
Ammonia + Nitrate	l/gm	165.2			.9 142.4	162.7	7 215.2	-	Ľ		350,7			244.6	Ammoola + Nitrate
20	mg/l	29700	0 25500	24900	33300	23100	0 21400	21400		П				24960	TS
Metal Concentrations															
Copper	/bu	8.40	O A GO	6 95		7.05 6.60	200	00 3	6 20		Į		ľ		Metal Concentrations
Nickel	l'ou	0.35										1	†	7.44	Copper
Lead	mod	250										1	1	0.31	Nickel
Zipc										0.50	_]		Í	0.49	Lead
\$ 100 mg	Light I	200									12,00			8.78	Znc
Arsenic	John E	0.40	0.70						0.30	0.50				0.50	Arsenic
Cadmium	l/gm	0.020		٦	8 0.013	13 0.016	5 0.012	2 0.009			ľ			0.02	Cadmin
Copair	μg⁄μ	0.09	90.09	9 0.07	17 0.08	01.0	0.08	8 0.05	0.08			ľ		0.08	Cobst
כוייסיוים	₩ W	09.0			7 0.49	19 0.46	5 0.44							0.51	Chamita
Mercury	mgy	0.012	٦		2 0.011	11 0.011	0.009	9 0.010	ľ	Ľ	ľ			0.011	Merrian
Molybdenum	lige.	0.29					3 0.21		0.26					0.28	Molyhdanim
Selenium	mg/l	0.10		0.10	0,10	01.0	0.10	0.10			L	r	l	0.10	Selection
Metal/Solids Concentration						L						ľ	ŀ		Allested the state of the state
Copper	(Max. 1700)	282.828	337.255	5 279.116	6 302,575	5, 285.714	1 289.720	0 275,701	288.793	303.030	325,733	İ		207	Charles Concerned
Nickel	(Max. 420)	12	13	3	1	13 12		13 11	L		13		İ	12	Note:
Lead	(Max. 1100)	17			16 1	19 17	19	9 19			23		<u> </u>	40	
Zinc	(Max, 4200)	337		325	5 356	338	332	F 1	341	367	391	İ	r	1032	7500
Arsenic	(Max. 170)	13	27		22 2					19	20		T	000	A
Cadmium	(Max. 34)	0.7	9.0	5 0.7		0.6 0.7	0.6			0.6	-	İ	t	2 0	Sasting
Cobalt	(Max. 340)	3		4	9					-	5 4	†	\dagger	5	Cadmidin
Chromium	(Max. 2800)	20	23		19	21 20	21		<u> </u>	2	22	T		3	COUNT
Mercury	(Max. 11)	0.40	0.51	1 0.48	8 0.47	ľ	0	0	6	0.34	0.47		t	0.45	
Molybdenum	(Max. 94)	10	11		9	11 12		L		12	13	ľ	f	44	Mercaly
Selenium	(Max. 34)	9		4	4	4 4				4	<u></u>	T	H	7	Seleping
SLUDGE HAULAGE BY SITE 2016															
		1000						:						ANNOAL	

	JAN	FEB	MAR	APR	MAY	NIT	II.	ALIG	QHV	L	NOW.	C C	ANNUAL
NASM PLAN #												3	IOIAL
Name Dies 404000						Ì							
146201 11011 #2 1020	_			_							1000	-	0 0000
Mosey Office #200000			İ								0701		1070.0
Masin Fight #20022				1656	_						2240	ŀ	0 0000
Total Hanlage						Ì					2000		0.0000
Chaire Health				1656						_	2960	-	A 2 + 2 2
							İ				2220		20.000

¥

KENILWORTH, ON

Sewage Biosolid's Daily Haulage Record

Amended Environmental Compliance Approval No.9566-6HYKC3 Amended Environmental Compliance Approval No.2336-84CPFV Broker # BROKTR11069

Applicator's License #PMAB TR11057

Customer Name: Shelburne

Date: April 28, 2016

Generator Location: Shelburne

Receiver Location: David Barker NASM/C of A#: 20622

Number of Loads	Carried With	Tanker Capacity in m3	Total m3 per tanker per day
9	International	36.00	324.00
8	Kenworth	36.00	288.00
9	Mack	36.00	324.00
		Daily Total m3:	936.00

Date Signed: April 29th, 2016

Carrier's Signature: Michelle Burns

Amended Environmental Compliance Approval No.9566-6HYKC3 Amended Environmental Compliance Approval No.2336-84CPFV Broker # BROKTR11069

Applicator's License #PMAB TR11057

Customer Name: Shelburne

Date: April 29, 2016

Generator Location: Shelburne

Receiver Location: David Barker NASM/C of A#: 20622

Number of Loads	Carried With	Tanker Capacity in m3	Total m3 per tanker per day
7	International	36.00	252.00
7	Kenworth	36.00	252.00
6	Mack	36.00	216.00
	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	Daily Total m3:	720.00

Date Signed: May 3rd, 2016

Carrier's Signature: Michelie Burns

Amended Environmental Compliance Approval No.9566-6HYKC3 Amended Environmental Compliance Approval No.2336-84CPFV Broker # BROKTR11069

Applicator's License #PMAB TR11057

Customer Name: OCWA

Date: November 9th, 2016

Generator Location: Shelburne

Receiver Location: <u>David Barker</u> NASM/C of A#: 20622

Number of Loads	Carried With	Tanker Capacity in m3	Total m3 per tanker per day
9	International	36.00	324.00
8	Kenworth	36.00	288.00
5	Mack	36.00	180.00
		Daily Total m3:	792.00
		Daily Total m3:	/92.00

Date Signed: November 10th, 2016
Carrier's Signature: Michelle Burns

Amended Environmental Compliance Approval No.9566-6HYKC3 Amended Environmental Compliance Approval No.2336-84CPFV Broker # BROKTR11069 Applicator's License #PMAB TR11057

Customer Name: OCWA

Date: November 10th, 2016

Generator Location: Shelburne

Receiver Location: David Barker NASM/C of A#: 20622

Number of Loads	Carried With	Tanker Capacity In m3	Total m3 per tanker per day
12	International	36.00	432
13	Kenworth	36.00	468
	Mack	36.00	
		Daily Total m3:	900.00

Date Signed: November 14th, 2016
Carrier's Signature: Michelle Burns

Amended Environmental Compliance Approval No.9566-6HYKC3 Amended Environmental Compliance Approval No.2336-84CPFV Broker # BROKTR11069 Applicator's License #PMAB TR11057

Customer Name: OCWA

Date: November 14th, 2016

Generator Location: Shelburne

Receiver Location: David Barker NASM/C of A#: 20622

Number of Loads	Carried With	Tanker Capacity in m3	Total m3 per tanker per day
1	International	36.00	36.00
1	Kenworth	36.00	36.00
1	Mack	36.00	36.00
		Dally Total m3:	108.00

Date Signed: November 15th, 2016
Carrier's Signature: Michelle Burns

Amended Environmental Compliance Approval No.9566-6HYKC3
Amended Environmental Compliance Approval No.2336-84CPFV
Broker # BROKTR11069
Applicator's License #PMAB TR11057

Customer Name: OCWA

Date: November 15th, 2016

Generator Location: Shelburne

Receiver Location: David Barker NASM/C of A#: 20622

Number of Loads	Carried With	Tanker Capacity in m3	Total m3 per tanker per day
5	International	36.00	180.00
5	Kenworth	36.00	180.00
5 5	Mack	36.00	180.00
		Dally Total m3:	540.00

Date Signed: November 17th, 2016
Carrier's Signature: Michelle Burns

Amended Environmental Compliance Approval No.9566-6HYKC3 Amended Environmental Compliance Approval No.2336-84CPFV Broker # BROKTR11069

Applicator's License #PMAB TR11057

Customer Name: OCWA

Date: November 16th, 2016

Generator Location: Shelburne

Receiver Location: Oscar Martin NASM/C of A#: 21028

Number of Loads	Carried With	Tanker Capacity in m3	Total m3 per tanker per day
7	International	36.00	252.00
7	Kenworth	36.00	252.00
3	Mack	36.00	108.00
-		Daily Total m3:	612.00

Date Signed: November 17th, 2016
Carrier's Signature: Michelle Burns

Amended Environmental Compliance Approval No.9566-6HYKC3
Amended Environmental Compliance Approval No.2336-84CPFV
Broker # BROKTR11069

Applicator's License #PMAB TR11057

Customer Name: OCWA
Date: November 17th, 2016
Generator Location: Shelburne

Receiver Location: Oscar Martin NASM/C of A#: 21028

Number of Loads	Carried With	Tanker Capacity In m3	Total m3 per tanker per day
7	International	36.00	252.00
6	Kenworth	36.00	216.00
5	Mack	36.00	180.00
		Daily Total m3:	648.00

Date Signed: November 18th, 2016
Carrier's Signature: Michelle Burns

Amended Environmental Compliance Approval No.9566-6HYKC3
Amended Environmental Compliance Approval No.2336-84CPFV
Broker # BROKTR11069
Applicator's License #PMAB TR11057

Customer Name: OCWA

Date: November 18th, 2016

Generator Location: Shelburne

Receiver Location: Oscar Martin NASM/C of A#: 21028

Number of Loads	Carried With	Tanker Capacity in m3	Total m3 per tanker per day
3	International	36,00	108.00
4	Kenworth	36.00	144.00
3	Mack	36.00	108.00
<u> </u>		Daily Total m3:	360.00

Date Signed: November 21st, 2016
Carrier's Signature: Michelle Burns

Appendix C

Calibration Reports

2016

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 519-766-1153 Fax: www.hollencontrols.ca

	Instrur	ment Repor	rt	
Verification	n: Yes	Magmeter		
	**	Calibration:		
Customer	r: OCWA West Highlan	d Hub Plant:	Shelburne WWTP	
Description	n: Digester Flow Dif. Pro	essure Date:	06-Oct-16	_
Manufacturer		Checked By:	Matt O'Grady	_
IVIOGE	1: 2000 Series	_ Serial No:	62544	
Tag No.: FI	08	Application:	Airflow	
Input %	Innut (DCI)			
0%	Input (PSI) 0.00	As Found	As Left	% Error
25%	2.50	0 L/s	0 L/s	0.000%
50%	5.00	250 L/s	250 L/s	0.000%
75%	7.50	500 L/s	500 L/s	0.000%
100%	10.00	750 L/s	750 L/s	0.000%
Confirmed Run Mode:		1000 L/s to service: Yes	1000 L/s	0.000%
Meter Type: Flow Unit: Flow Range: PipeSize: Pipe Material: Calibration Factor:	Differential Pressure L/s 0-1000 L/s (0-10 PSI) 10" Stainless Steel	•		
Comments: Verification of	of original calibration.			- - -
	Signature: _A	MolsOz		-

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 Fax: 519-766-1153

	Inst	rumer	it Report		
		Magmo	eter		
Verification:	Yes		Calibration:		
Customer	OCWA West Hig	hd 1 1 t - 1		· · · · · · · · · · · · · · · · · · ·	
Description:	Aeration Flow D	if Decemb		Shelburne WWTP	_
Manufacturer:	Maghelic	ii. Pressure		06-Oct-16	_
	2000 Series		Checked By:		_
	EGGG SCITES		Serial No:	62544	_
Tag No.: FI 09)		Application:	Airflow	<u> </u>
Input %	Input (PS	1)	As Found	As Left	% Error
0%	0.00		0 L/s	0 L/s	0.000%
25%	2.50		250 L/s	250 L/s	0.000%
50%	5.00		500 L/s	500 L/s	0.000%
75%	7.50		750 L/s	750 L/s	0.000%
100%	10.00		1000 L/s	1000 L/s	0.000%
Confirmed Run Mode:	Yes R	eturned to se	ervice: Yes		
lowmeter Information:					
Meter Type: Flow Unit: Flow Range: PipeSize: Fipe Material: Calibration Factor:	Differential Pre L/s 0-1000 L/s (0 - 10" Stainless Ste	10 PSI)			
Comments: Verification of	original calibratio	on.			•
	Sigr	nature:	10 m/Z		

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 519-766-1153 Fax:

		nent Repo	rt	
Verificatio		Magmeter Calibration:	T T	
		Campration:		
Custome	r: OCWA West Highland	d Hub Plant:	Shelburne WWTP	
Description	n: Chart Recorder FIR 0!	5 Date:	06-Oct-16	
Manufacture			Matt O'Grady	_
Mode	l: Commander 1900	Serial No:	A 50398/3/1	_
Tag No.: FIF	R 05	Application:	Flow Recorder	
		, debuggetett	LIOM WECOLUEI	
Input %	Input (mA)	As Found	As Left	% Error
0%	4.00	0 L/s	0 L/s	0.000%
25%	8.00	26 L/s	26 L/s	0.000%
50%	12.00	52 L/s	52 L/s	0.000%
75%	16.00	78 L/s	78 L/s	0.000%
100%	20.00	105 L/s	105 L/s	0.000%
Confirmed Run Mode:	Yes Returned	to service: Yes		0.00070
Meter Type: Flow Unit: Flow Range: PipeSize: Pipe Material: Calibration Factor:	Open Channel L/s 0-10S L/s 9" Parshall Flume			
Verification	: of original calibration. S	imulated Calibration w	vith loop calibrator.	- - -
	Signature:	Mossely		-

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 Fax: 519-766-1153

	Instru	ıment Repor	rt	
		Magmeter		
Verificat	tion: Yes	Calibration:		
Custon	ner: OCWA West Highla	and Hub Plant:	Shelburne WWTP	
Descripti	ion: WAS Flow		06-Oct-16	_
Manufactu	rer: Krohne	Checked By:		_
Mod	del: IFC010D	Serial No:	A99 15693	_
Tag No.:	FIT 01	Application:	North Aeration Cells	5
Input %	Innut	As Found		
0%	Input 4.00	As Found	As Left	% Error
10%	\$.60	3.99	3.99	0.250%
S0%	12.00	5.59	5.59	0.179%
100%	20.00	11.99	11.99	0.083%
10070	40.00	19.99	19.99	0.050%
Confirmed Run Mod Flowmeter Informat		ed to service: Yes		
110 Williams Hillarian	.ton.			
Meter Type:	Magnetic			
Flow Unit:	L/s	_		
Flow Range:	0-28 L/s	_		
PipeSize:	3"			
Pipe Material:	Stainless Steel	_		
Calibration Factor:	5.167			
Commen	-4			
	on of original calibration	n.		
				_
				_
				-
				-
				-
	Eirantus	e: Moha		
	Signature	a: 101015		_

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 Fax: 519-766-1153

www.hollencontrols.ca

Instrument Depart

	metrume	ent Kebo	rt	
		gmeter		
Verification	n: Yes	Calibration	:	
Cuotoma				
	r: OCWA West Highland H		Shelburne WWTP	_
Manufacturei	Tank 1 RAS Flow		: 06-Oct-16	
	I: IFC010D		: Matt O'Grady	
INIOGE	II. ILCOTOD	Serial No:	A99 15978	
Tag No.: FIT	Γ 02	Application	DAP CI	
	102	Application:	: KAS Flow	
Input %	Input	As Found	As Left	0/ Essen
0%	4.00	3.99	3.99	% Error
10%	5.60	5.59	5.59	0.250%
50%	12.00	11.99	11.99	0.179%
100%	20.00	19.99	19.99	0.083%
			15.53	0.050%
Confirmed Run Mode:	Yes Returned to	service: Yes	<u> </u>	1
		301 FICE. 103	-	
Flowmeter Information	n:			
	•••			
Meter Type:	Magnetic			
Flow Unit:	L/s			
Flow Range:	0-66.67 L/s			
PipeSize:	4"			
Pipe Material:	Stainless Steel			
Calibration Factor:	5.243			
	312.10			
	4			
Comments:	* -			
	of original calibration.			
	or original constation.			_
				_
				_
				_
-				_
		<u> </u>		_
		- 0		
	Signature:	moth //		
	orginature:	MARCHINE S		_

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 519-766-1153 Fax: www.hollencontrols.ca

	mstrume	int Kebol	rt	
		meter	=	
Verification:	Yes	Calibration:		
Cuete				
	OCWA West Highland Hub		Shelburne WWTP	_
	Tank 2 RAS Flow		06-Oct-16	_
Manufacturer:		Checked By:		_
WUUEI.	: IFC010D	Serial No:	A99 15977	-
Tag No.: FIT	03	Application:	North Aeration Cells	
		. 4-1	HOIGI HOIGIGH COM	
Input %	Input	As Found	As Left	% Error
0%	4.00	3.99	3.99	0.250%
10%	S.60	5.59	S.S9	0.179%
S0%	12.00	12.00	12.00	0.000%
100%	20.00	20.00	20.00	0.000%
				-
Confirmed Run Mode:	Yes Returned to se	ervice: Yes		<u> </u>
Flowmeter Information				
Meter Type:	Magnetic			
Flow Unit:	Magnetic			
Flow Range:	0-66.67 L/s			
PipeSize:	4"			
Pipe Material:	Stainless Steel			
Calibration Factor:	5.243			
oumorestor, recess.	3.243			
Comments:				
<u>Verification</u>	of original calibration.			
		1		
	Signature:	mosely		

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152

Fax:

519-766-1153 www.hollencontrols.ca

Verification: Yes		ınstru	ment Kepor	T	
Customer: OCWA West Highland Hub Date: O6-Oct-16 Manufacturer: Krohne Manufacturer: FC 010D Serial No: A99 15979 Tag No.: FIT 04 Application: Sludge Loading Input % Input As Found As Left % Error 0% 4.00 4.00 0.0009 10% 5.60 5.62 5.60 0.3579 50% 12.00 12.03 12.00 0.2509 100% 20.00 20.03 20.00 0.150% Confirmed Run Mode: Yes Returned to service: Yes Flowmeter Information: Weter Type: Magnetic O-75 L/s Oipe Size: 4" Size Magnetic Stainless Steel Calibration of original calibration. 4-20mA Trim Completed.	Verificat	ion: Yes	Magmeter Calibration:		
Description: Truck Fill Flow Manufacturer: Krohne Checked By: Matt 0'Grady Serial No: A99 15979			Campiation.		
Description: Truck Fill Flow Date: 06-Oct-16 Manufacturer: Krohne Checked By: Matt 0'Grady Serial No: A99 15979	Custom	er: OCWA West Highlar	nd Hub Plant:	Shelburne WWTP	
Model: IFC 010D Serial No: A99 15979	Descripti	on: Truck Fill Flow			
Tag No.: FIT 04 Application: Sludge Loading					
Input % Input	Mod	del; IFC 010D	Serial No: 2	A99 1S979	_
O%	Tag No.:	FIT 04	Application: 5	Sludge Loading	
O%	Input %	Input	As Found	Anlast	24.5
10% 5.60 5.62 5.60 0.3579					
50% 12.00 12.03 12.00 0.2509 100% 20.00 20.03 20.00 0.1509 Confirmed Run Mode: Yes Returned to service: Yes Weter Type: Magnetic Flow Unit: L/s Flow Range: 0-75 L/s PipeSize: 4" Pipe Material: Stainless Steel Calibration Factor: Comments: Verification of original calibration. 4-20mA Trim Completed.	10%				
100% 20.00 20.03 20.00 0.150% Confirmed Run Mode: Yes Returned to service: Yes Weter Type: Magnetic Flow Unit: L/s Flow Range: 0-75 L/s PipeSize: 4" Stainless Steel Calibration Factor: Comments: Verification of original calibration. 4-20mA Trim Completed.	50%				
Confirmed Run Mode: Yes Returned to service: Yes Flowmeter Information: Meter Type: Magnetic Flow Unit: L/s Flow Range: 0-75 L/s PipeSize: 4" Pipe Material: Stainless Steel Calibration Factor: Comments: Verification of original calibration. 4-20mA Trim Completed.				12.00	0.230%
Confirmed Run Mode: Yes Returned to service: Yes Flowmeter Information: Meter Type: Magnetic Flow Unit: L/s Flow Range: 0-75 L/s Pipe Size: 4" Pipe Material: Stainless Steel Calibration Factor: Comments: Verification of original calibration. 4-20mA Trim Completed.			20.03	20.00	0.150%
Meter Type: Magnetic Flow Unit: L/s Flow Range: 0-75 L/s PipeSize: 4" Pipe Material: Stainless Steel Calibration Factor: Comments: Verification of original calibration. 4-20mA Trim Completed.	Confirmed Run Mod	e: Yes Returner	d to service: Yes	20.00	0.13078
Verification of original calibration. 4-20mA Trim Completed.	Flow Unit: Flow Range: PipeSize: Pipe Material:	L/s 0-75 L/s 4"	 		27
		n of original calibration.		d.	

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152

Fax:

519-766-1153

Descripti Manufactus Mod Tag No.: FIT 05 Input % 0% 25% 50% 75% 100% Confirmed Run Mod Carameters: Setup Input % 100% Confirmed Run Mod Carameters: Setup Input % Inp	er: OCWA on: Effluer er: Milltro lel: OCM II	West Highlar It Flow nics I Range: put (mA) 4.00 8.00 12.00 16.00 20.00	Date Checked B	As Le	ft (mA) .99 .99	% Error 0.25% 0.12% 0.08% 0.06%
Descripti Manufactus Mod Tag No.: FIT 05 Input %	on: Effluer er: Milltro lel: OCM II	Range: put (mA) 4.00 8.00 12.00 16.00 20.00	O-105 L/s As Found (mA) 3.99 7.99 11.99 15.99 19.99	As Le 3 7 11 15	ft (mA) .99 .99	0.25% 0.12% 0.08%
Manufacture Mode Tag No.: FIT 05 Input % 0% 25% 50% 75% 100% Confirmed Run Mode Confirmed Run Mode Parameters: Setup 10 Language 11 Units 12 Temperature 13 Primary Elem 14 Calculation 15 Flow Unit 16 Max Flow 17 Height of Max 100 Exponent 100 Exponent 101 Mode 102 Exponent 102 MA Assignme	er: Milltro	Range: put (mA) 4.00 8.00 12.00 16.00 20.00	Date Checked B Type 0-105 L/s As Found (mA) 3.99 7.99 11.99 15.99 19.99	As Le 3 7 11 15	ft (mA) .99 .99	0.25% 0.12% 0.08%
Input % O% 25% S0% 75% 100% Confirmed Run Mod Parameters: Setup O Language Units Primary Elem Calculation Flow Unit Max Flow Height of Max House C Exponent A Assignme	el: OCM II	Range: put (mA) 4.00 8.00 12.00 16.00 20.00	O-105 L/s As Found (mA) 3.99 7.99 11.99 15.99 19.99	As Le	ft (mA) .99 .99	0.25% 0.12% 0.08%
Input % O% 25% S0% 75% 100% Confirmed Run Mod Parameters: Setup O Language Units Temperature Primary Elem Calculation Flow Unit Max Flow Height of Max Pun Max Assignme	In	Range: put (mA) 4.00 8.00 12.00 16.00 20.00	7ype 0-105 L/s As Found (mA) 3.99 7.99 11.99 15.99 19.99	As Le 3 7 11 15	ft (mA) .99 .99	0.25% 0.12% 0.08%
Input % O% 25% 50% 75% 100% Confirmed Run Mod Parameters: Setup Units Units Temperature Primary Elem Calculation Flow Unit Max Flow Height of Max Exponent Exponent A Assignme		put (mA) 4.00 8.00 12.00 16.00 20.00	0-105 L/s As Found (mA) 3.99 7.99 11.99 15.99 19.99	As Le	ft (mA) .99 .99 .99	0.25% 0.12% 0.08%
Input % O% 25% 50% 75% 100% Confirmed Run Mod Parameters: Setup Units Units Temperature Primary Elem Calculation Flow Unit Max Flow Height of Max Exponent Exponent A Assignme		put (mA) 4.00 8.00 12.00 16.00 20.00	As Found (mA) 3.99 7.99 11.99 15.99 19.99	3 7 11 15	.99 .99 1.99 5.99	0.25% 0.12% 0.08%
O% 25% S0% 75% 100% Confirmed Run Mod Parameters: Setup Po Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P100 Exponent P100 Exponent P100 Exponent		4.00 8.00 12.00 16.00 20.00	3.99 7.99 11.99 15.99 19.99	3 7 11 15	.99 .99 1.99 5.99	0.25% 0.12% 0.08%
O% 25% S0% 75% 100% Confirmed Run Mod Parameters: Setup Po Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P100 Exponent P100 Exponent P100 Exponent		4.00 8.00 12.00 16.00 20.00	3.99 7.99 11.99 15.99 19.99	3 7 11 15	.99 .99 1.99 5.99	0.25% 0.12% 0.08%
25% 50% 75% 100% Confirmed Run Mod Parameters: Setup Po Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P100 Exponent P100 Exponent P100 Exponent	e: Yes	8.00 12.00 16.00 20.00	7.99 11.99 15.99 19.99	3 7 11 15	.99 .99 1.99 5.99	0.25% 0.12% 0.08%
S0% 75% 100% Confirmed Run Mod Parameters: Setup P0 Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P1000 Exponent P1000 Exponent	e: Yes	12.00 16.00 20.00	11.99 15.99 19.99	11	i.99 i.99	0.12% 0.08%
75% 100% Confirmed Run Mod Parameters: Setup Po Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P100 Exponent P100 Exponent P100 Exponent	e: Yes	16.00 20.00	15.99 19.99	15	.99	0.08%
100% Confirmed Run Mod Parameters: Setup P0 Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P100 Exponent P100 Exponent	e: Yes	20.00	19.99	15	.99	
Parameters: Setup PO Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P00 Exponent P100 Exponent P100 Exponent	e: Yes					
Parameters: Setup PO Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P100 Exponent P100 Exponent P100 Exponent	e: Yes	Place	d in service: Vec).99	0.05%
Setup Do Language Do Language Do Language Do Units Do Temperature Do Primary Elem Do Calculation Do Height of Max Do Exponent Do Exponent Do Max Assignme			a in actaice. 162			
Setup PO Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P124 MA Assignme						
PO Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P100 Exponent P100 Max Assignme						
PO Language P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P100 Exponent P100 Max Assignme						
P1 Units P2 Temperature P3 Primary Elem P4 Calculation P5 Flow Unit P6 Max Flow P7 Height of Max P100 Exponent P100 Exponent P100 Max Assignme	Parameters		¬ —	Relay Pa	rameters	
Primary Elem Calculation Flow Unit Max Flow Height of Max Exponent MA Assignme		0	Relay	Function	On	Off
Primary Elem Calculation Flow Unit Max Flow Height of Max Exponent MA Assignme		0	Parameters	P13	P14	P15
Calculation Calcul		0	Relay	1 1	0	0
Flow Unit Max Flow Height of Max Exponent MAX Signme	ent	0	Parameters	P18	P19	P20
Max Flow Height of Max U Exponent MA Assignme		11	Relay	2		
P7 Height of Max 10 Exponent 124 mA Assignme		0	Parameters	P21	P22	P23
Exponent MA Assignme		105	Relay	3		
24 mA Assignme	Head	34.48		-		
- In the significant		1.53	Comments:			
	mA Assignment			n of Calibra	tion.	
26 mA Span	mA Span					-
32 Totalizer Mult	plier	6				•
45 Low Flow Cut-	off	0				
46 Range at Zero		87				
47 Blanking Dista		30.48264				
						•
			Model			

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 519-766-1153 Fax: www.hollencontrols.ca

	instrum	ent Report		
	M	- lagmeter		
Verification:	Yes	Calibration:		
Customer:	OCWA West Highland Hul			
Description:	Raw Sewage Flow		Shelburne WWTP	
Manufacturer:	Rosemount		06-Oct-16	_
Model:		Checked By: I	Matt O'Grady	_
	0/12	Serial No:	860188157	_
Tag No.: FIT C	06	Application: I	Raw Sewage	
Input 9/				
Input %	Input	As Found	As Left	% Error
25%	4.00	4.00	4.00	0.000%
	8.00	8.00	8.00	0.000%
50% 75%	12.00	12.00	12.00	0.000%
100%	16.00	16.00	16.00	0.000%
Confirmed Run Mode:	20.00	20.00	20.00	0.000%
TOTAL TRAIN TAIDUC.	Yes Returned	d to service: Yes		
lowmeter Information:				
Meter Type:	Magnetic			
low Unit:	L/s	-		
low Range:	0-150 L/s	_		
PipeSize:	8"	_		
ipe Material:	Stainless Steel			
Calibration Factor:		_		
_		-		
Comments:				
Verification of	original calibration.			
				M-
· · · · · · · · · · · · · · · · · · ·				
				•
				-
				-
		0		•
		Mass /		
	Signature:	11000		
		4		•

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 Fax: 519-766-1153

	Instrume	nt Report		
		meter -		
Verification:	Yes	Calibration:		
Customer:	OCWA West Highland Hub	-	100.	
Description:		-	Shelburne WWTP	_
Manufacturer:		_	06-Oct-16	_
	Magmaster	Checked By: I Serial No: 3		_
		Seliai No. 3	1K22/16426	_
Tag No.: FIT 07		Application: S	itorm Flow	
1				
Input %	Input (mA)	As Found	As Left	% Error
25%	4.00	3.99	3.99	0.25%
50%	8.00	7.99	7.99	0.12%
75%	12.00	11.99	11.99	0.08%
100%	16.00	15.98	15.98	0.12%
Confirmed Run Mode:	20.00 Yes Returned t	19.98 to service: Yes	19.98	0.10%
lowmeter Information:				
Meter Type:	Magnetic			
low Unit:	L/s			
low Range:	0-200 L/s			
PipeSize:	10"			
Pipe Material:	Stainless Steel			
Calibration Factor:				
C				
Comments:	eleteral radio and			
vertification of o	riginal calibration.			_
				_
			<u></u>	_
				_
				_
				-
		4.11		į
	Signature:	Mobiles		

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 Fax: 519-766-1153

	Instrume	ent Report		
	Mag	gmeter		
Verification:	Yes	Calibration:		
Customor	2C1444 144 115-1-1 - 1-4 - 1			
Description: 9	OCWA West Highland Hub storm Return Flow	-	Shelburne WWTP	_
Manufacturer: A	rorm Keturn Flow	•	06-Oct-16	_
	Magmaster	Checked By:		
Wiodel, I	Magniastei	. Serial No: <u>1</u>	3K22/16425	_
Tag No.: FIT 0	3	A multi-sit		
	<u> </u>	Application: S	Storm Return Flow	
Input %	Input (mA)	As Found	As Left	D/ C
0%	4.00	3.99	3.99	% Error
25%	8.00	7.99	7.99	0.25%
50%	12.00	11.99	11.99	0.12%
75%	16.00	15.98	15.98	0.08%
100%	20.00	19.98	19.98	0.12%
Confirmed Run Mode:	Yes Returned	to service: Yes	13.30	1 0.10%
Flowmeter Information:				
Meter Type:	Magnetic			
Flow Unit:	L/s			
Flow Range:	0-100 L/s			
PipeSize:	8"			
Pipe Material:	Stainless Steel			
Calibration Factor:				
Comments:				
Verification of	original calibration.			
				·
				·
				-
				•
				•
				.
	C!	110:01/		
	Signature: _	111011112		

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 519-766-1153 Fax: www.hollencontrols.ca

	in	strume	nt Report		
		Magn	_		
Verification:	Yes		Calibration:		
Customer	OCWA West	Highland Hub	51		
Description:	Cludge Trans	for Cloud		Shelburne WWTP	_
Manufacturer:	ARR	erriow		06-Oct-16	_
	Magmaster			Matt O'Grady	_
***************************************	Magniaster		Seriai No:	3K62000015302	_
Tag No.: FIT 0	9		Application:	Sludge Flow	
Input %	Inpu	t (mA)	As Found	A = 1 = 6	
0%		.00	4.00	As Left	% Error
25%		.00		4.00	0.00%
S0%		.00	8.00	8.00	0.00%
75%		5.00	12.00 16.00	11.99	0.00%
100%		0.00	20.00	15.98	0.00%
Confirmed Run Mode:	Yes	Returned to		19.98	0.00%
Meter Type:		netic /s			
Flow Range:) L/s			
PipeSize:		n			
Pipe Material:	Stainle:	ss Steel			
Calibration Factor:					
Comments: Verification of	original calib	ration.			
					,
		Signature:	Mohale		

160 Southgate Drive Guelph, Ontario, N1L 1R1 Phone: 519-766-1152

Fax: 51

519-766-1153

1		CO CITAL	1150				010 700	-1100
							lencontrol	s.ca
		lr	ıstrume	ent R	Repor	t		
			MultiR	anger Plus				
	Verification:	Yes			Calibration	:	T	
	0						_	
	Customer:	OCWA W	est Highland Hub	<u>-</u>	Plant	: <u>Sh</u> elburn	e WWTP	
	Description:	Primary D	igester Level	_		06-Oct-1		_
	Manufacturer:				necked By		rady	-
	Model:	Multirang	er Plus	_	Serial No.:	62504		_
Tag N	lo.: LIT 02		Range:	0.00m - 4	40m			
				0.00111 4	.40111			
	Input %	In	put (mA)	As F	ound	Λο	Left	0/ F====
	0%		4.00		.00		.00	% Error
	25%		8.00		.00		.00	0.00%
	50%		12.00		1.99		1.99	0.00%
	75%		16.00		5.99		5.99	
	100% 20.00		20.00		19.99 19.99			0.06%
Confir	med Run Mode:	Yes	Returned	to service:		1		0.05%
						•		
Setup	Parameters:		-					
		meters				Re	lays	
"1	Units		1		Relay	Function	On	Off
22	Mode of Measureme	ent	1		Parameter	P8	P9	P10
94	Empty		4.81		Relay 1	0	1.05	1.01
	Span		4.4		Parameter	P11	P12	P13
5	Near Blanking		0.31		Relay 2			
6	mA Output		2		Parameter	P14	P15	P16
7	Decimal Point		2		Relay 3			7.20
8	Relay 1		0		Parameter	P17	P18	P19
9	Relay 1 Setpoint		1.05		Relay 4			
10	Relay 1 Setpoint		1.01		Parameter	P20	P21	P22

Comments:

Verified Original Calibration.

Level 4.41m (above span)

Note: Span can be set to 4.51m

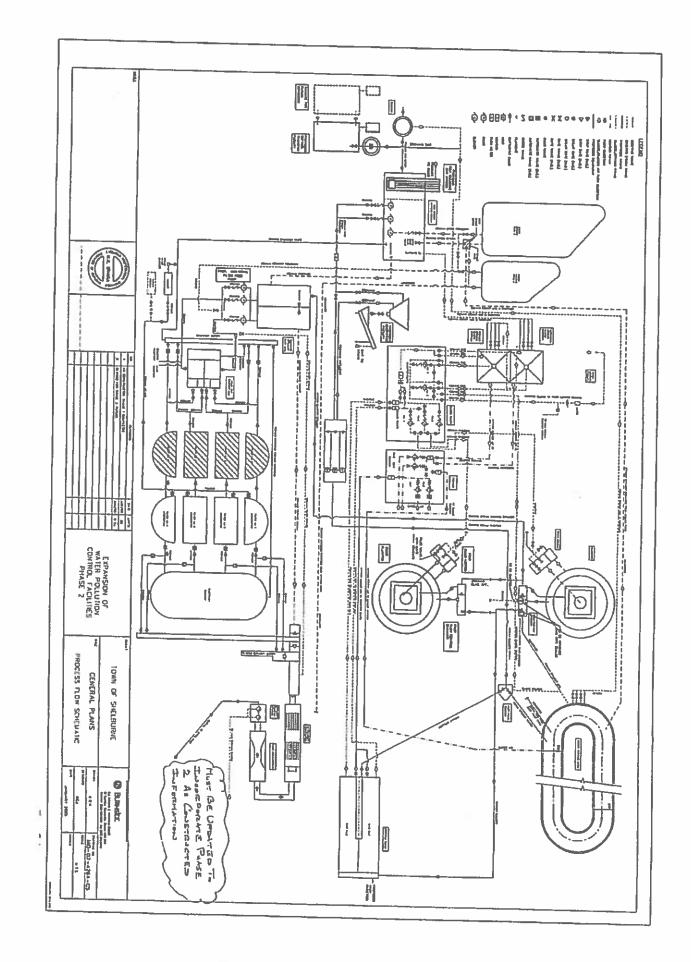
Signature:

160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152

Fax:

519-766-1153

		l l	nstrume	ent R	Report	ł.				
	·····			anger Plus						
	Verification: Yes			Calibration:						
	Customor	00000			·		_			
	Customer: OCWA West Highland Hub				Plant: Shelburne WWTP					
	Description: Secondary Digester Level Manufacturer: Millitronics				Date: 06-Oct-16					
	Model: Multiranger Plus				Checked By: Matt O'Grady					
		Multilang	CI FIUS	-	Serial No.:	62505		_		
Tag No	o.: LIT 03		Range:	0.00 - 2.2	.5m					
_										
	Input %	Input (mA)		As Found		As Left		% Error		
	0% 25%	4.00		3.99		3.99		0.25%		
	50%	8.00		7.99		7.99		0.12%		
	75%	12.00		11.99		11.99		0.08%		
	100%		16.00		15.99		15.99			
Confirm	med Run Mode:	Yes	20.00		19.99		19.99			
			Netainea	to service	: Yes					
1	Parameters 1			Relays Relay Function On Off						
2	Mode of Measurer	nent	1		Parameter	Function P8	On P9	Off		
3	Empty		3.2		Relay 1	10	- 13	P10		
4	Span		2.25		Parameter	P11	P12	P13		
5	Near Blanking		0.35		Relay 2			113		
6	mA Output		2		Parameter	P14	P15	P16		
7	Decimal Point		2		Relay 3					
B	Relay 1		0		Parameter	P17	P18	P19		
9	Relay 1 Setpoint				Relay 4					
					Parameter	P20	P21	P22		
					Refay 5					
				,		-				
				,	Comments:	inal Calle	42			
					Verified Original Calibration.					
				Span can be adjusted to as high as 2.85m						
					44 -	2		. [
			:	Signature:	1660	2				


160 Southgate Drive Guelph, Ontario, N1G 4P5 Phone: 519-766-1152 Fax: 519-766-1153

		ll i	nstrume	ent R	Report	t			
				Ranger 100	-				
	Verification: Yes		Calibration:						
	Customer:	OCWA W	est Highland Hub		Dient	Shelburne			
	Description:	Well Leve	1 25t Friginaliu Hub	-	_				
	Manufacturer: Siemens				Date: 06-Oct-16 Checked By: Matt O'Grady				
		Multirang	er 100	_	_				
			<u> </u>	_	Serial No.:	PBD/TN22	.0356	-	
Tag No.:	LIT 04		Range:	0.00 - 2.3	0m				
-									
	nput %	Input (mA)		As Found		As Left		% Error	
	0%		4.00		4.00		4.00		
	25%	8.00		8.00		8.00		0.00%	
	50%	12.00		12	12.01		12.01		
	75%	16.00			16.01		16.01		
Canfirma	100% d Run Mode:	20.00			20.01		20.01		
COMMINE	a Kali Mode;	Yes	. Keturned	to service	Yes				
		ameters		-		Rela	ays		
2001	Operation		1		Relay	Function	On	Off	
2002	Material		1		Parameter	P111	P112	P113	
2003	Process Speed		2]	Relay 1				
2004	Transducer		102		Parameter				
005	Units		1	ļ	Relay 2				
006	Empty		2.64 m		Parameter				
007	Span		2.30 m		Relay 3				
065 070	LOE		5.00 m		Parameter				
070	 		0:00		Relay 4				
					Parameter				
					Relay 5				
	Comments:		Verification of o	riginal cali	ibration.				
				Signature:	main!	//			
				o.B.iotoic.	114/1/10	9			

Appendix D

Process Flow Schematic

2016

